The schematic symbol typically includes a shape that can reflect the function of the component and one or more pins. How a component is represented, i.e., the look of the symbol and arrangement of component pins, is up to the designer. This should be done to comply with the requirements of your organization and the design standards you choose to adopt. One component symbol can represent the entire physical component, or the component can be defined by multiple sub-parts where each sub-part represents some logical entity within the physical component (e.g., each AND gate in a quad AND gate component, or the coil and contact sets in a relay). This type of component is also called a multi-part component.

Schematic symbols are created by placing drawing objects to represent the component body and pins that represent the physical pins on the actual component. Schematic symbols are created in a Schematic Library in Altium's Schematic Library editor and have the file extension *.SchLib. Any number of component symbols can be created in a schematic library. The organization of symbols into libraries should suit both the requirements of the company and the type of component library in which the symbol is destined to reside.

Regardless of how the models and component definitions are stored, once the component is placed onto the schematic, it then becomes a unified design component. The symbol will appear on the schematic; when it is edited, it shows the full set of component properties, including links to other domain models and its list of component parameters.

The physical component that is mounted on the completed printed circuit board is represented in a variety of ways. On the schematic, the component is represented by a logical symbol. During SPICE simulation, a SPICE model is used, and on the PCB design, it is represented by its footprint. Each of these representations is referred to as a Domain Model and each unified component is then the sum of its domain models.

The schematic symbol is one of the domain models that, together with the other domain models, defines the unified design component. The schematic symbol actually has a dual nature: it can operate as a simple domain model, created in the library editor as nothing more than a graphical shape and a set of pins, and it can also be used as the actual unified design component having other domain models, such as the PCB footprint linked to it in the library editor. The mode that you use will depend on how your components are stored and organized. There are a number of ways of organizing and storing components, including:

- Simple schematic and PCB libraries
- Integrated libraries
- Database libraries
- Managed content servers
Preparing the Workspace

The sheet size is configured on the General tab in the Page Options region of the Properties panel in Document Options mode. You should always zoom in so that the grid is easily visible before placing objects.

Always draw the component symbol close to the sheet origin (the center of the sheet).

The default units for schematic and schematic library grids are imperial, including the DXP Defaults option. Since all Altium components are designed on this imperial grid, it is important to appreciate the impact of deciding to switch to a metric sheet grid as it becomes difficult to correctly wire to components created on different grids. Note that imperial grids can be used with metric sheet sizes, such as A3, so it is not necessary to change to a metric grid when working with metric-sized sheets. The units for the current sheet are defined on the General tab in the General region of the Properties panel in Document Options mode.
Use the **General** region of the *Properties* panel in **Document Options** mode to set the units for the current sheet.

Units for new sheets (schematic and library) are defined on the **Schematic – General** page of the *Preferences* dialog.

Objects are placed on the current snap grid. The current grid is displayed at the bottom of the workspace on the left-hand end of the Status bar.

Press the **G** key to cycle the snap grid through the available settings. Available settings can be edited on the **Schematic – Grids** page of the *Preferences* dialog.
Use the Schematic – Grids page of the Preferences dialog to define the snap grid settings.

Typically, objects and pins are placed on a grid of 10 or 5, with strings being the only object needing to be placed on a grid of 1.

Creating the Schematic Symbol

After setting up the workspace options as required, the next step is to capture the graphical representation of the component – to create the symbol graphics that will represent that component when placed on a schematic sheet. It is important to decide upon a standard for the graphical schematic symbols by which to adhere. This will provide a formal template when designing the symbol graphics and result in a guaranteed level of consistency. Altium's design methodology follows standard IEEE 315, which not only covers the most common circuit elements, but also clearly defines how semiconductor elements can be combined to symbolize any number of silicon device types.

The body of the symbol is created by placing graphical design objects in the schematic library editor workspace by using the **Place** menu, the **Utilities** bar, or the **Active Bar**. Double-click the placed schematic symbol to open the **Properties** panel to further define each shape.

Altium Designer includes a variety of closed symbol shapes including rectangle, polygon, and ellipse as shown below.
Line-type shapes include arc, line/polyline and Bezier. Lines/polylines can include arrow heads and tails. Double-click to open the *Properties* panel to define the heads and tails.

The default settings for the properties of all objects, such as line width and color, are defined on the *Schematic – Defaults* page of the *Preferences* dialog.
Use the **Schematic - Defaults** page of the **Preferences** dialog to define default settings for all schematic symbols.

Object properties can also be edited during placement. Press the **Tab** key to edit the properties while the object is floating on the cursor before placement. Note that edits made during placement become the new default unless the **Permanent** checkbox is enabled in the **Schematic - Defaults** page of the **Preferences** dialog.

Editing the Schematic Symbol

To move an object after placement, click and hold the object then move the object to the desired location using the mouse.

To resize an object after placement, click once on the object to select it and display the editing handles then click and hold on a handle to resize the object.
Adding and Removing Vertices from Polylines

Vertices (editing handles) can be added to and removed from a polyline. Select the polyline, click and hold on a line or vertex then press **Insert** or **Delete** to add or remove a vertex.

Adding Pins to the Symbol

It is the component pins that give the component its electrical properties and define connection points on the component for directing signals in and out. A pin is placed to represent each pin on the actual physical component.

A pin can be placed in the workspace using one of the following methods. In each case, the pin appears floating on the cursor held by the electrical end. Rotate and/or flip the pin as required and click to effect placement.

- Use the **Place » Pin** command (or shortcut **P, P**).
- Click the button on the design object drop-down of the **Utilities** toolbar.
- Click the button on the **Active Bar**.
- With the **Properties** panel in **Component** mode (double-click a Component in the workspace), click the button on the **Pins** tab to open the **Component Pin Editor** dialog in which you can add (or edit) pins.
Use the highlighted button on the **Pins** tab of the Properties panel to open the Component Pin Editor dialog.
Configuring Pin Properties

Press Tab to open the Component mode of the Properties panel to edit the pin properties before placement. Numerical values will auto-increment on subsequent pin placements. Auto-increment behavior is configured in the Auto-Increment During Placement settings on the Schematic - General page of the Preferences dialog. Use negative values to auto-decrement.
Use the Schematic - General page of the Preferences dialog to define auto-increment behavior. During placement or whenever a pin is moved, the pin is held by the electrical end (also called the hot end of the pin). The pin must be positioned so that the electrical end is away from the component body. Press the spacebar to rotate a pin while it is being moved.

Pins also can be placed to represent electro-mechanical points on the component, such as the tab on a voltage regulator.

A pin has a number of properties including a Display Name and a Designator. It is the pin Designator that is used to match the symbol pin to the PCB footprint pad. The default distance that the pin's Designator and Name appear from the end of the pin is a system-wide setting for the Schematic and Schematic Library editor. Configure the Pin Margin on the Schematic - General page of the Preferences dialog.

Individual settings for the Name Position and Font can be used by configuring the properties in the Pin Properties dialog (accessed by clicking the Edit button in the Component Pin Editor dialog).
A pin has an **Electrical Type** that is used by Altium's electrical rules check system to verify that pin-to-pin connections are valid. Set this option to suit the electrical type of that component pin. The default pin **Length** should suit the chosen snap grid (typically 10 or 5). The default length is 30; typical lengths are 20 or 30.

Graphical Symbols can be added to different positions of the Pin to represent electrical information from the pin.

Using the Schematic Library Panel to Create Schematic Symbols

Components are created with the design objects in the Schematic Library Editor. Components can be copied and pasted from one schematic library to another or from the Schematic Editor to the Schematic Library Editor.
A common approach to symbol creation is to copy a component from an existing schematic library. To do this:

1. Open the source schematic library and the SCH Library panel (click the Panels button at the bottom-right of the workspace then select SCH Library from the pop-up menu).
2. Select the required component(s). Use standard Windows multi-select techniques to select multiple components.
3. Right-click on a selected component then choose Copy from the floating context menu.
4. Open the target schematic library, right-click anywhere in the list of components in the SCH Library panel then choose Paste from the menu.

To create a new schematic symbol library:

1. Click File » New » Library » Schematic Library. An empty document called Schlib1.SchLib is created that displays a blank component called Component_1.
2. Click File » Save As and rename and save the new schematic library document to a suitable location with an appropriate filename.

Use the SCH Library panel to review and manage component symbols in an open schematic library. If the panel is not currently visible, click the Panel button at the bottom right of the workspace then select SCH Library to open it.

Defining Symbol Properties

Symbol properties, such as the designator and description of the symbol, are edited in the Component mode of the Properties panel (double-click on the component name in the SCH Library panel).
If the component symbol is being created purely as a domain model, then only the following properties need to be configured:

- **Design Item ID** - if the symbol is generic, such as a resistor, capacitor or transistor, you can leave this blank. If it is a dedicated symbol for a specific component, edit to reflect the comment string required on the schematic. Be aware that this is also passed to the PCB.
- **Designator** - enter the required designator prefix followed by a ?.
- **Description** - this string is helpful when component searches are performed.
- If the component symbol is not a purely domain model, additional parameters should be added. For generic symbols, the **Design Item ID** can be used to add the specific value (depending on the workflow/library concept). Also, additional information about the component can be added on the **Parameters** tab.

- **Type** defines what type of component this symbol represents. Non-standard components, such as a company logo (Graphical) or a heatsink (Mechanical) can be created as schematic symbols and placed into a project.
The task of creating a component library symbol and its pin data has become an increasingly involved undertaking as components have advanced in complexity. With current large scale BGA devices requiring the placement and configuration of hundreds of pins, for example, substantial time and effort is often required to create viable component symbols.

Schematic Symbol Generation Tool

To ease the workload associated with creating component symbols, Altium offers an advanced **Schematic Symbol Generation Tool** based on a symbol wizard interface and pin editor dialog. This features automatic symbol graphic generation, grid pin tables, and smart data paste capabilities.

The **Schematic symbol generation tool** is provided as a software extension and is automatically installed with the software. The extension appears under the Extension Manager’s **Installed** tab.

To create a new component symbol using the **Schematic symbol generation tool**, add a new library component using the **Add** button under the top section of the **SCH Library panel**. The new symbol then can be developed using the **Symbol Wizard** dialog (**Tools » Symbol Wizard**).
The dialog's settings determine the basic configuration for the symbol including its layout style and number of pins.

The **Layout Style** allows you to choose from a set of predefined patterns for where the pin positioning is automatically assigned. Use the drop-down to select the preferred arrangement. The **Preview** image to the right and the data in the **Side** column will update accordingly.

Source URL: