AltiumLive
The Next 60 Minutes...

AltiumLive 2017
 - Do you remember?

Common pitfalls 2018
 - Top 10 EMC issues

Help me – it’s automotive
 - some automotive trouble
 - EVs approaching

Live review/discussion
AltiumLive | Who am I

Thomas Wischnack (aka Dl3IT/AC4UX)

> Hardware development since 1993
> 9 years working for AST (automated guided vehicles)
 – Hardware for control systems, sensors, interface and communication (LF, RF)
 – Software (embedded, PC, FPGA)
> 16 years working for Porsche Engineering
 – Hardware/software development
 – System design
 – Troubleshooting
 – EMC consulting

> Why PCB doctor?
 – I don’t know... Ask Altium...
Great event with endless good discussions

Many surprised people, about the topics presented

- High speed design
- Apply filters correctly
- Component selection
- Switching voltage regulators
- Layer stack

Any improvement during the last year?
Common Pitfalls 2018

Top 10

1. Switching voltage regulators
2. Ground flooding
3. High speed routing/impedance control
4. Layer stack
5. Filter placement/routing
6. Ground layout
7. Common mode chokes
8. Connector placement
9. Copy and paste
10. Case grounding

(The same procedure as every year...)
Common Pitfalls 2018

Case grounding

- Don’t connect your case with DC connection to ground
 - Avoid unpredictable ground loops
 - Unpredictable GND currents
 - Filters don’t act as filters anymore
- Make RF connection with \(R \parallel C\)
 - Good start value: 100K-1M and 10n-100n
 - Depends on relevant frequency range

Copy and paste

- „I don’t know, why this component is placed here. It’s not my design... I had to reuse it...“
- Unknow/not fully understood designs lead to trouble in almost 100%
- If you don’t understand the design – DON’T USE IT
- Designs might have worked before, but most likely in another context
- Designs aren’t good, just because they exist
Common Pitfalls 2018

Connector placement

- Bad places for connectors
 > On every edge of the PCB, all with GND and power connections, mixed signals
 > In the center of the PCB and on the edges

- OK places
 > One (!) connector in the center

- Great places
 > All connectors on ONE edge

- Unpredictable cross currents through your PCB
- Unpredictable behaviour of filters
- Significant effort for filtering on every connector
- ESD critical shoot through
Common Pitfalls 2018

> **Common mode chokes**
 - Are not bad by nature
 - Are useful for symmetrical signals
 - Are of limited use for unsymmetrical signals (but mostly used)
 - Save sometimes 3dB
 > But don’t fix the problem
 - Make EMC engineering almost impossible due to the blocking of the return path
 - Are a good indicator of the „layout quality“

> **Ground layout**
 - Remember 2017?
 > How many grounds are necessary?
 > AGND, PGND, SGND, DGND, FGND...
 - Where is the return path for your signals?
 - Voltage is the difference between two potentials
 > Reference potential?
Common Pitfalls 2018

> Filter placement/routing
 - Voltage is the difference of two potentials
 - Many filter components act on voltage difference
 > If the current does not pass by, the filter does not see it and can’t do anything
 - Placement of filters is critical
 > Filters „in the middle of nowhere“ are useless (also valid for some spare 100nF capacitors…)

> Layer stack
 - No impedance matched routing without an appropriate layer stack
 > Even, if project management insists
 > Even, if the PCB is more expensive
 - Ask your PCB manufacturer for assistance in defining your layer stack
 - Not every possible setup is useful
 > 6 layers are good
 > 8 layers not quite useful
 > 10 layers are good
High speed routing

- High speed signals without impedance match cause EMC trouble
 - Always
 - Even, if... (you know...)
- High speed does not only depend on the base frequency
 - Harmonics are much more critical
 - Low speed signals can have lots of harmonics, depending on the driver stage
- Series resistance is cheap and make impedance matching possible
- Common ground planes as reference planes are a MUST
- Only ONE (in words: 1) common ground for high speed systems

„Physics always wins“
Ground flooding (my favorite...)

- Most often seen in combination with "common mode chokes in power lines"
- Unnecessary with correct layer setup
 - Do you really want to shield GND layers with GND flooding on top/bottom?
- Unpredictable ground currents
- Unpredictable reference for high speed signals
- Unpredictable reference for voltage sensitive applications (measurement)
- Unpredictable filter behaviour
- Gives the famous foggy hills in the EMC spectrum
 - Fog cannot be cleaned without removing the flooding and making a proper layout
- Capacitive load on every line
 - Output driver tries to load this capacitor
 - Unnecessare peak loads for the power supplies
Common Pitfalls 2018

> Switching voltage regulators
 - TOP 1 root cause for EMC issues
 - Can produce trouble up to 1GHz
 - Newer parts are most often the better choice
 > The manufacturer did their homework
 - High frequency devices tend to be less painfull
 > Components are smaller
 > Placement can be smaller
 > Smaller loops
 - Main design failures:
 > Switch node far too big (in terms of space, loop size)
 > GND layout
 > Capacitor selection (low ESR)
 > No shielded inductors
 > Filter application wrong
Help me – It’s Automotive

> Automotive is not bad – it’s (a bit) different
 - Automotive companies have their own design rules
 - Designs are tested intensively
 > Even the smallest sidenote in the requirements docs will be tested
 - Not every part/component is available/allowed
 - Automotive designs are negotiated very hard
 > Unexpected filter components can be a big cost issue no one will be paying for
 - Car power systems are never „clean“
 - EMC limits are very low
 > 0dBµV, or even less
 - The distance to antennas is very short; sometimes a few centimeters
 > The least little radiation is observed immediately
Help me – It’s Automotive

> How to avoid bad experience
 – Don’t make your first automotive design on your own
 > Seek for experienced help
 – Every requirement that is written in any requirement spec is important
 > Even, if you don’t think it’s necessary
 > Even, if it’s not obvious at the beginning of a project
 – Do intensive research on the design rules of the OEMs
 > E.g. VW 80000 and later versions
 > This is not a single document; this is a library
 > Read everything!
 – Automotive components
 > Long term supply necessary
 > Are sometimes hard to get
 > Are more expensive than industrial grade
 – (but not necessarily better)
Help me – It’s Automotive

> How to avoid bad experience

- Automotive industries is the mother of process oriented development
 > Be prepared for the overhead caused by project management, documentation, ...
EVs Approaching

> EVs are not new
 - First electrical Porsche was build in 1898
 - Fork lifters, service cars are pretty much standard

> The system setup in an EV is „new“
 - High voltages
 > Up to 800V, 400A, 320kW for charging and battery systems
 > Insulation and safety requirements
 > Standards are not ready and work is in progress
 - Power converters
 > High power converters in small packages
 > High peak currents
 > Increasing switching frequencies due to SicMOS and GAN devices
 - Batteries
 > Lithium batteries with high energy density
This means...

- Power systems in cars are much (!) noisier than before
- Expect significant voltage (and current) peaks
- Expect strong magnetic fields
- New levels for the power supplies will be very likely
- Almost everything is more or less undefined
 - It’s all new
 - OEMs learn how to make EVs
 - Customers learn how to use EVs, and OEMs will it their concepts
- Standards are being made
 - (legal) Changes for existing system are more than likely
And now...

> The fun part...

Welcome to

(Mr. „AltiumLive 2017, he was tough enough to present his design for a live review“)

Rainer Beerhalter

and his design for a new live review