What if you could print, in just one day.....

MULTILAYER PCBS

Wide range of applications

PCB & CONNECTOR

Functional & Structural elements

ANTENNAS

Functional PCBs

ELECTRO-MAGNETIC COILS

New Mechatronic designs

www.nano-di.com © 2018 Nano Dimension. All rights reserved.
ALTIUMLIVE 2018:
You Design & You Manufacture:
Additive Manufacturing of
Complex Multilayer Circuits

Robert Even Munich
Product Marketing Jan.17, 2018
Manager
The 3D Printing
3D Multi-layer Printing Revolution
Why Additive / Why 3D Print?

- Accelerate time to market
- Protect IP
- Freedom to Experiment!
- Improve efficiency
Printed Electronics and the IPC

- IPC standards
 - IPC/JPCA-4921, Requirements for Printed Electronics Base Materials (2012)
 - NEW! IPC/JPCA-6901, Application Categories for Printed Electronics
 - NEW! IPC-6903, Terms and Definitions for the Design and Manufacture of Printed Electronics (Additive Circuitry)
3D Printed Electronics and the IPC

- IPC-7991

- Technologies
 - Traditional Printed Circuit Board methods
 - Inkjet
 - Extrusion
 - Aerosol Jetting, MID
Very good, Low-cost, Desktop, 2-sided*, Simple PCBs
Players – Lab

Excellent Lab Tools for Research
Very Good Single Layer Deposition on any Contour
Test multiple ideas - quickly and affordably!

- No internal Purchase Order bureaucracy
- No shipping time
- No minimum order quantity
- No more hesitation to try new concept
Change Your Workflows: New Intermediate Options

- Proofs of concept
- Design validation
- PCB Prototype
- Test fixtures
- Redistribution layers
PCB adapter within 3h
AM-Produced PCB Reduces Rework Time by 97%

- Phytec job - 24 prototypes
- Drawing error discovered 2 days before deadline
- Estimated rework – 2-5 weeks
- Actual rework – 1 day!
 - Print 30 4x4mm PCBs in 6 hours
 - Powerup & soldering ½ day
Two Main Lines of Additive Manufacturing

A- PCB & RF ANTENNAS/DEVICES

B- ELECTROMECHANICAL DEVICES (examples)

Less than 1.3dB difference up to 6GHz Vs. conventional manufacturing

Encoders

Electromagnets
How it

- 2 Printheads jet both materials simultaneously
- Both conductor & substrate are printed - fully additive process
- Build up, layer by layer
 - ✓ Silkscreen
 - ✓ Solder mask
 - ✓ Signal layers
 - ✓ Isolation layers
 - ✓ Through holes, filled vias, mills

Nano Dimension
Conductor: AgCite Silver Nanoparticle Ink

- Optimized for
 - Inkjet 3D printing
 - Compatibility with dielectric ink
 - On-the-Fly sintering (no post-process)
 - Used for surface finish (no need for gold-plating)
Materials: Dielectric Ink

- A “liquid FR-4”.
 - $D_k @ 1 \text{ GHz}: 2.9 \quad D_f @ 1 \text{ GHz}: 0.02$
- Optimized for:
 - Inkjet 3D printing
 - Compatibility with Conductive ink
 - On-the-fly curing (no post-process)
 - Used for solder masking

www.nano-di.com © 2018 Nano Dimension. All rights reserved.
• PCB Size: 20x20 cm (max)
• Min/Max PCB thickness: 0.7/ 3 mm
• Max. layer count: N/A
• Min/Max layer thickness: 10μm

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Trace Width</th>
<th>Space Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oz/ft²</td>
<td>um</td>
<td>mils.</td>
</tr>
<tr>
<td>1/3</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>1/2</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>5</td>
</tr>
</tbody>
</table>
Examples of 125µm (5 mil) Space
Send to Print!

Next Job
- **Job Name:** test prepared job.apcb
- **Owner:** Robert
- **Added Time:** Sun Dec 10 17:01:37 201

Printer Status
- **Status:** WORKING
- **Slices Completed:** 148 of 3046
- **Current Action:** Printing

Time to finish: 00:20:50
Planar: 100% Precision 3D-Printed

6-Layer PCB (Credit Phytec)

12-Layer PCB

Hybrid: BGA Rework (Credit Phytec)

Complex (and seasonal) Routes

Capacitive Sensors

5G Balun Bow-Tie Antenna
Soldering To Printed Silver Ink
Application Area and Users

<table>
<thead>
<tr>
<th></th>
<th>Rapid Prototyping</th>
<th>Distributed / low volume production</th>
<th>End use parts</th>
<th>Saving weight</th>
<th>Smart parts</th>
<th>Non-planar</th>
<th>Antennas</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Auto</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aerospace</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Consumer</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Medical</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IoT</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
X-Ray & SEM of Boards and Interconnects
Additive Manufacturing of Harris RF Amplifier

- Functional RF circuits
- @4.7GHz, 1db gain difference
- @6 GHz, <1.3db gain difference

Results very close to traditional FR-4 & coaxial connector
• Temperature & humidity sensor
• Tested & works at normal temp. ranges
• 4 layer PCB with 0.5mm BGA
 • 18 x 18 mm x1.6mm
 • Line/Space – 120/120 microns
 • Blind and buried microvias
 • 5 PCBs printed in 12 hours
 • Vapor Phase soldering at 240degC

Printed & tested by Phytec New Dimensions
We have achieved basics, now we move into:

✓ Signal integrity (e.g. controlled impedance)
✓ RF performance and high-end dielectrics
✓ Power circuits
✓ Reliability and longevity

Simulation tools are not always present

EDA & CAD worlds are approaching...

- Best example, Altium & SolidWorks
3D Electronics Printing...
SOLIDWORKS Plug-In - The Mechatronics Gap
Bend-To-Fit Capability
Who says conductors have to be planar?
By pausing the print it is possible to add components within PCBs before continuing the print process.

* In development and not fully released
Thank You!

ALTIUMLIVE 2018:
You Design & You Manufacture: Additive Manufacturing of Complex Multilayer Circuits

Robert Even
Product Marketing Manager
Munich
Jan.14, 2018
About Nano Dimension

Listed on the TASE in 2014 and on the Nasdaq in 2016

Since 2014:
- Developed printer
- Developed materials
- Established manufacturing
- Built organization

Since 2016:
- Conducted comprehensive early access trials with Fortune 500 companies

Started generating revenues:
Q4 2017 - $440k
Q1 2018 - $635k
Q2 2018 - $1,088k
Q3 2018 - $1,672k

2018 Execution:
- Opened U.S. headquarters
- Opened HK Office, expanding reach in Asia Pacific

Opened 4 Customer Experience Centers
Recruited 18 value-added resellers world-wide
Worldwide Reach and Expansion

Distributors

Customers

Headquarters
Our Manufacturing Capabilities

- In-house 3D Printer production
- In-house nano inks production
- Certified ISO14001 and OHSAS18001

- Founded - 2012
- NASDAQ / TASE (NNDM)
- 100 employees
- 2/3 Engineers /Scientists
Our Technology is Breaking Design

Chemistry: conductive nano-metals & polymers

Software: recipe driven additive manufacturing, closed loop controls, PM

Ink Jet: heads, ink delivery system, monitoring

Polymerization and sintering: UV, IR, Heat