Altium NEXUS Documentation

Трассировка дифференциальных пар_AD

Содержание

Полное содержание

Главная страница: Трассировка

Explanatory diagram showing how differential signaling works

В дифференциальной системе передача сигнала осуществляется через пару взаимосвязанных проводников, один из которых переносит сигнал, а второй – равный, но противоположный по знаку сигнал. Дифференциальная передача сигнала разработана для тех ситуаций, когда логическая «земля» источника сигнала не может быть должным образом соединена с логической «землей» нагрузки. Дифференциальная передача сигнала не восприимчива к электрическим шумам – основным помехам, присутствующим в электронных изделиях. Другим важным преимуществом дифференциальной передачи сигналов является минимизация электромагнитных излучений, создаваемых сигнальной парой.

Трассировка дифференциальной пары на плате – это метод создания сбалансированной передающей системы, способной проводить дифференциальные (прямой и противоположный) сигналы на печатной плате. Обычно эта дифференциальная трассировка будет взаимодействовать с внешней дифференциальной передающей системой, такой как соединитель или кабель.

Example of differential routing on a PCB

Важно учитывать, что в то время как коэффициент связи, достигаемый в витой паре, может быть более 99%, то в трассировке дифференциальной пары он обычно меньше 50%. По мнению экспертов, задачей трассировки на плате является не достижение определенного дифференциального импеданса, а поддержание свойств, требуемых для обеспечения качественной передачи дифференциального сигнала целевому компоненту от внешнего кабеля.

Согласно Ли Ритчи (Lee Ritchey), признанному эксперту в области проектирования быстродействующих плат, успешная дифференциальная передача не требует работы с определенным дифференциальным импедансом. Требуется следующее:

  • Задать каждому из трассируемых сигналов импеданс, равный половине импеданса входящего дифференциального кабеля.
  • Каждая из двух сигнальных линий корректно подключена к приемнику с собственным характеристическим импедансом.
  • Две линии должны иметь длину, одинаковую в пределах, допустимых семейством микросхем и используемой в проекте частотой. Необходимо уделить внимание сохранению синхронизации и согласованию длин, достаточному для соответствия допустимой в проекте разности фаз. Пример допуска на длину: быстродействующий проект USB, длина должна быть согласована в пределах 150 милов (3,81 мм); синхронизирующие сигналы DDR2 должны быть согласованы в пределах 25 милов (0,635 мм).
  • Используйте одновременную трассировку двух сигналов для достижения согласования длины. При необходимости допускается разделить трассы для обхода препятствий.
  • Допускается изменение слоя, пока поддерживаются импедансы сигналов.

Для получения более подробной информации обратитесь к статье Differential Signaling Doesn't Require Differential Impedance, автор Lee W. Ritchey, доступной по ссылке https://speedingedge.com/home/related-articles/.

Перейдите по ссылке, чтобы узнать о Быстродействующих проектах в Altium NEXUS.

Перейдите по ссылке, чтобы узнать о Трассировке с контролируемым импедансом в Altium NEXUS.

Определение дифференциальной пары на схеме

Определение дифференциальной пары на схеме осуществляется размещением директивы Differential Pair (Place » Directives) на каждой цепи пары. Обратите внимание, что цепи пары должны быть поименованы метками цепей с суффиксами _N и _P. Размещение директивы Differential Pair на каждой цепи пары применяет к ним параметр с именем (Name) DifferentialPair и значением (Value) True.

Определения дифференциальных пар передаются на плату в процессе синхронизации.

Example of Differential Pair directives on a schematic
Размещение директив на схеме для определения дифференциальной пары.

Чтобы применить директиву к объекту цепи, разместите директиву Parameter Set , чтобы он касался объекта цепи, как показано выше. Система обнаруживает правило проектирования и/или класс именно в объекте Parameter Set и затем передает их на плату в процессе синхронизации.

► Узнать больше об объекте Parameter Set

Использование директивы Blanket для определения множества пар

Если необходимо определить большое количество пар, существует альтернативный подход – размещение директивы Blanket. Это позволяет применять директивы ко множеству цепей, которые находятся под Blanket (система обнаруживает цепи, электрические точки объектов Net Label которых находятся в пределах Blanket). Затем директиву Blanket достаточно пометить одной директивой Differential Pair, как показано на рисунке ниже.

На этом рисунке также показано, что помимо того что цепи будут определены как элементы дифференциальных пар (с помощью директивы Differential Pair), все включенные цепи станут элементами класса цепей RIO_Nets, а пары станут элементами класса дифференциальных пар ROCKET_IO_LINES и что будет создано правило Differential Pair Routing. Поскольку в этой директиве Differential Pair указан класс цепей, в редакторе плат областью действия этого правила будет класс цепей RIO_Nets после того, как проект будет передан в редактор плат.

Обратите внимание, что хотя редактор плат поддерживает определение в правиле Differential Pair Routing класса дифференциальных пар в качестве области действия, это не произойдет автоматически при выполнении Design » Update PCB. Поэтому лучше создать класс цепей, затем вручную обновить правило на печатной плате, чтобы его областью действия был класс дифференциальных пар, а не класс цепей.

Example of how a Blanket directive can be used with a Differential Pair directive to target multiple nets

Передача дифференциальных пар в редактор плат

Если директивы Differential Pair размещены на цепи в схеме, то согласно настройкам проекта по умолчанию элементы дифференциальных пар будут созданы на плате. Для настройки используются следующие параметры в диалоговом окне Options for PCB Project:

  • Вкладка ComparatorExtra Differential Pairs (тогда для последующих обновлений будет осуществляться проверка различий дифференциальных пар и настроек правил, если будут созданы/изменены правила проектирования).
  • Вкладка ECO GenerationAdd Differential Pair (тогда для последующих обновлений будет осуществляться проверка изменений дифференциальных пар и настроек правил, если будут созданы/изменены правила проектирования).
  • Вкладка Class GenerationGenerate Net Classes (если вы создаете классы цепей для определения области действия правила Differential Pair Routing).

Просмотр и управление дифференциальными парами на плате

Просматривать определения дифференциальных пар и управлять ими можно в панели PCB в режиме Differential Pairs Editor. На изображении ниже показаны пары, принадлежащие классу дифференциальных пар ROCKET_IO_LINES. Пара V_RX0 выделена, цепи в этой паре: V_RX0_N и V_RX0_P. Знаки - и + возле названий цепей являются системными метками, указывающими положительный или отрицательный элемент пары.

PCB panel in Differential Pair Editor mode
Просматривать определения дифференциальных пар и управлять ими можно в панели PCB в режиме Differential Pair Editor. Щелкните ПКМ в области Differential Pair Classes для создания нового класса.

Определение дифференциальных пар на плате

Дифференциальные пары можно определять как на схеме, так и в редакторе плат. Для создания объекта дифференциальной пары нажмите кнопку Add в области Differential Pairs панели PCB в режиме Differential Pairs Editor. В открывшемся диалоговом окне Differential Pair выберите существующие цепи для положительной и отрицательной цепи пары, укажите название пары и нажмите OK. Обратите внимание, что в качестве элементов дифференциальной пары можно выбрать любые две цепи, определенные в редакторе плат.

Differential Pair dialog, used in the PCB editor to define a differential pair
Быстрое создание пар по именованным цепям.

При создании пар из цепей с последовательной схемой именования (т.е. у них общий префикс и соответствующий положительной и отрицательной цепи суффикс, например TX0_P и TX0_N) можно использовать диалоговое окно Create Differential Pairs From Nets. Нажмите кнопку Create From Nets в панели PCB в режиме Differential Pairs Editor, чтобы открыть это диалоговое окно. Используйте фильтры в верхней части диалогового окна, чтобы отобразить пары цепей на основе существующих имен цепей.

Определение класса дифференциальной пары

Зачастую необходимо, чтобы в область действия правила попадало более одной дифференциальной пары. В этой ситуации можно определить класс дифференциальных пар, объединив их таким образом в логическую группу. Определение классов осуществляется в диалоговом окне Object Class Explorer (Design » Classes).

PCB editor Object Class Explorer, use this to create Differential Pair Classes
Создание классов дифференциальных пар для упрощения процесса создания правил проектирования, применяемых к этим парам.

Также можно создать новый класс дифференциальных пар щелчком ПКМ в области Differential Pair Classes панели PCB в режиме Differential Pairs Editor.

Использование xSignals с дифференциальными парами

Если на пути сигнала дифференциальной пары есть последовательные элементы, будет полезно создать объекты xSignal. Объект xSignal – это заданный конструктором путь сигнала между двумя узлами. Это могут быть два узла внутри одной цепи или два узла разных цепей. С помощью xSignal можно определить путь сигнала, который включает в себя цепи по обе стороны от последовательного компонента, а также сам компонент. Расчеты длины трассировки для xSignal включают в себя длину пути, проходящего через последовательный компонент, показываемый тонкой линией при выборе объекта xSignal в режиме xSignals панели PCB.

xSignals can be used with differential pairs
Эти дифференциальные пары были определены как объекты xSignal. Длина трассировки включает в себя последовательный компонент.

Объекты xSignals можно использовать для определения области действия правил проектирования, в том числе правил Matched Length и Length.

► Узнайте больше об Определении путей быстродействующих сигналов с помощью объектов xSignal.

Применимые правила проектирования

Для интерактивной трассировки дифференциальной пары создайте и настройте указанные ниже правила проектирования в диалоговом окне PCB Rules and Constraints Editor (Design » Rules):

  • Правило Differential Pairs Routing – определяет ширину трасс цепей в паре, зазор между трассами в паре и общую несвязанную длину (пара становится несвязанной, если зазор больше значения Max Gap). Задайте область действия правила, чтобы оно действовало на дифференциальную пару, например IsDifferentialPair или InDifferentialPairClass('All Differential Pairs'). Обратите внимание, что настройка Max Gap используется при трассировке, но не при проверке правил проектирования. В ходе проверки правил, расстояние между цепями проверяется согласно применяемому правилу Electrical Clearance.
  • Правило Electrical Clearance – определяет минимальный зазор между любыми двумя объектами (например, между контактными площадками или между трассой и контактной площадкой) любых цепей, в одной цепи или в различных цепях. Задайте область действия этого правила, чтобы оно действовало на элементы дифференциальной пары, например InDifferentialPair.
    Важное примечание: В ходе трассировки дифференциальной пары, зазор между цепями в паре определяется настройкой Max Gap, заданной в применяемом правиле Differential Pair Routing. Однако в ходе проверки проектных правил, проверка всех электрических объектов осуществляется на основе применяемого правила Electrical Clearance. Если цепи в паре расположены друг к другу на расстоянии, меньшем допустимого в применяемом правиле Electrical Clearance, будет необходимо добавить дополнительное правило Electrical Clearance, действующее на дифференциальные пары и допускающее зазор, равный настройке Gap. Также типы цепей этого правила должны быть настроены для проверки в одной дифференциальной паре (Same Differential Pair), как показано на этом изображении.

Настройка области действия правил проектирования

Область действия правил проектирования определяет набор объектов, к которым это правило должно быть применено. Поскольку дифференциальная пара является объектом, можно использовать запросы, примеры которых приведены ниже:

  • InAnyDifferentialPair – объект в любой дифференциальной паре.
  • InDifferentialPair('D_V_TX1') – указывает на обе цепи в дифференциальной паре под названием D_V_TX1.
  • InDifferentialPairClass('ROCKET_IO_LINES') – указывает на все цепи во всех парах, принадлежащих классу ROCKET_IO_LINES.
  • (IsDifferentialPair And (Name = 'D_V_TX1')) – указывает на объект дифференциальной пары под названием D_V_TX1.
  • (IsDifferentialPair And (Name Like 'D*')) – указывает на все объекты дифференциальных пар, название которых начинается с буквы D.

Использование Differential Pair Rule Wizard для определения правил

Нажмите кнопку Rule Wizard под областью Nets панели PCB в режиме Differential Pairs Editor, чтобы открыть Differential Pair Rule Wizard и в последовательном процессе настроить требуемые правила проектирования. Обратите внимание, что область действия создаваемых правил зависит от того, что выделено при нажатии на кнопку Rule Wizard. Если была выделена одна пара, то правила будут действовать на цепи этой пары, но если был выбран класс дифференциальных пар, то правила будут действовать на цепи и все пары в этом классе.

Трассировка дифференциальной пары

Главная страница: Интерактивная трассировка

Дифференциальные пары трассируются именно как пары, т.е. трассировка двух цепей осуществляется одновременно. Для трассировки дифференциальной пары выберите команду Interactive Differential Pair Routing из меню Route. Затем необходимо выбрать одну из цепей пары – нажмите по любой из них, чтобы начать трассировку. На анимации ниже показана трассировка дифференциальной пары.

Simple animation showing a differential pair being routed, then glossed
Трассировка цепей в дифференциальной паре осуществляется одновременно.

В процессе трассировки дифференциальной пары вы можете выполнить следующие действия:

  • Сочетание клавиш Shift+R для циклического переключения между режимами разрешения конфликтов (Walkaround, Push, Hug and Push, Stop at First Obstacle, Ignore Obstacles)
  • Сочетание клавиш Shift+Пробел для циклического переключения между доступными режимами изломов трасс (излом под углом 45 градусов, излом под углом 45 градусов с дугой, излом под углом 90 градусов, излом под углом 90 градусов с дугой)
  • Для изменения слоя и добавления переходных отверстий: нажмите клавишу * на цифровой клавиатуре или используйте сочетание Ctrl + Shift + Вращение колеса мыши
  • Нажмите клавишу 3 для циклического переключения между доступными значениями ширины дифференциальной пары (User Choice, Rule Min, Rule Preferred, Rule Max)
  • Сочетание клавиш Shift+6 для циклического переключения между доступными значениями зазора дифференциальной пары (Rule Min, Rule Preferred, Rule Max)
  • Нажмите клавишу 4 для циклического переключения между доступными размерами переходных отверстий (User Choice, Rule Min, Rule Preferred, Rule Max)
  • Нажмите клавишу 6 для циклического переключения между доступными структурами переходов или клавишу 8 для отображения списка доступных структур переходных отверстий (узнайте больше об управлении переходными отверстиями, размещаемыми в процессе интерактивной трассировки)
  • Нажмите клавишу 5 для переключения между доступными расположениями переходных отверстий при изменении слоя
  • Сочетание клавиш Shift+F1 для отображения всех доступных для команды сочетаний клавиш
  • В режимах размещения дуг в углах нажимайте клавишу "," для уменьшения максимального радиуса дуги и "." для увеличения максимального радиуса дуги. Размер дуги можно изменять интерактивно с помощью перемещения курсора. Эта настройка определяет максимально допустимый радиус, который отображен в строке состояния в процессе трассировки.
Многие из этих настроек, такие как текущий режим трассировки, ширина, зазор и размер переходного отверстия, отображаются в строке состояния и в информационном окне Heads Up display (Shift+H для его включения/отключения).

Многие функции трассировки дифференциальных пар аналогичны функциям интерактивной трассировки одиночных цепей.

► Узнать больше об Интерактивной трассировке.

Улучшение качества трассировки

Редактор плат включает в себя мощные инструменты для улучшения качества существующих трасс. Инструменты, известные как Glossing (Сглаживание) и Retracing (Повторная трассировка), доступны в меню Route.

  • Gloss (Сглаживание) – направлено на улучшение геометрии трасс, уменьшая количество изломов и общую длину трасс. Сглаживание сохраняет ширину существующих трасс и зазор в дифференциальной паре.
  • Retrace (Повторная трассировка) – предполагает, что геометрия соответствует требованиям, и направлена на согласование существующей трассировки с правилами проектирования. В то время как сглаживание сохраняет ширину существующих трасс и зазоры дифференциальных пар, повторная трассировка обновляет эти значения до предпочтительных (Preferred). Повторная трассировка является эффективным инструментом в тех случаях, когда правило проектирования было изменено, и это изменение необходимо применить к существующим трассам.

На анимации в предыдущем разделе, Трассировка дифференциальной пары, показана простая демонстрация сглаживания.

Стратегии выделения трасс

Выделение является базовым действием для всех аспектов проектирования, в том числе при работе с существующей трассировкой. Если необходимо провести сглаживание или удаление некоторых трасс, их нужно сначала выделить.

Выделение внутри и на границе рамки

В редакторе плат можно выделять объекты, полностью попадающие в рамку, либо те, которые попадают в рамку и на ее границу. Режим зависит от направления перемещения мыши в процессе выделения объектов рамкой:

Left Mouse Button click and drag from left to right, to select objects that are completely within the selection rectangle Режим Select Within – зажмите мышь и перемещайте ее слева направо для создания синей рамки и выделения всех видимых незаблокированных объектов, полностью попадающих в границы рамки.
Left Mouse Button click and drag from right to left, to select objects that are touching the selection rectangle Режим Select Touching – зажмите мышь и перемещайте ее справа налево для создания зеленой рамки и выделения всех видимых незаблокированных объектов, которые попадают в рамку и на ее границу.

Расширение набора выделенных трасс

Обычной ситуацией является необходимость выделения множества объектов, которые касаются, например, сегмента трассы разведенной цепи или линии соединения неразведенной цепи. Относительно простой задачей является выделение набора сегментов трасс, которые идут параллельно друг другу, с помощью рамки, касающейся этих сегментов (Select Touching), как описано выше. Но интерактивное выделение целых трасс может оказаться затруднительным.

Но это можно легко сделать – выберите один или несколько сегментов и затем расширьте выделенный набор, включив в него касающиеся трассы, с помощью клавиши Tab, как показано на видео ниже.

Чтобы выделять только линии соединения, зажмите Alt и щелкайте по линиям мышью или выделяйте их рамкой.

Демонстрация способов выделения трасс

Демонстрация способов выделения.

Чтобы узнать больше о различных стратегиях выделения, перейдите на страницу Сглаживание и повторная трассировка.

Интерактивное изменение трассировки дифференциальной пары

Главная страница: Изменение трассировки

При трассировке может возникнуть множество случаев, когда будет необходимо изменить существующие трассы – например, выходы из контактных площадок могут не понравиться вам, и вы заходите изменить их форму (как показано на видео ниже). Хотя и возможно изменить существующие трассы с помощью перетаскивания сегментов, зачастую проще выполнить трассировку повторно.

Для этого выберите команду Route » Interactive Differential Pair Routing, затем щелкните по какой-либо существующей трассе. Проложите новый путь трассы и вернитесь на существующую трассу, где это необходимо. Будет создана петля со старым и новым путями. После щелчка ПКМ или нажатия Esc для завершения трассы лишние сегменты будут автоматически удалены, в том числе и лишние переходные отверстия. Трассировка дифференциальных пар несколько отличается от трассировки одиночных цепей. В процессе трассировки одиночной цепи, последний сегмент отображается контуром (упреждающий сегмент), и он не размещается при щелчке ЛКМ. Трассировка дифференциальных пар не включает в себя упреждающие сегменты, поэтому при щелчке ЛКМ будут размещены все видимые сегменты. Наведите курсор, чтобы убедиться в отсутствии лишних сегментов.

При изменении дифференциальных пар вручную путем перетаскивания сегментов возможно расталкивание одного элемента пар другим, либо перемещение каждого из них независимо.

Simple demonstration of modifying existing differential pair routing
Использование удаления петель для интерактивной повторной трассировки дифференциальной пары – простая трассировка вдоль нового пути, с автоматическим удалением старого пути. Пары можно изменить путем перетаскивания одной из цепей с расталкиванием другой (Shift+R в процессе перетаскивания для изменения режима).

Чтобы узнать больше, перейдите на страницу Изменение трассировки.

Отображение доступных зазоров

Бывали случаи, когда трассу было невозможно проложить через какой-нибудь зазор, и вы не могли понять почему? Такая путаница еще более вероятна при трассировке дифференциальных пар. В Altium NEXUS существует возможность для помощи в таких ситуациях под названием динамическое отображение границ зазоров. Когда эта функция включена, области, определяемые существующими объектами + применяемым правилом для зазоров, отображаются в виде затененного полигона внутри локальной круглой области, как показано на видео ниже. Нажмите Ctrl+W для включения или отключения этой функции.

Simple demonstration of enabling the Clearance Display mode while routing a differential pair
Динамическое отображение границ зазоров в процессе размещения дифференциальной пары.

Отображаемую область можно ограничить областью вокруг текущего положения курсора, либо отобразить на всем экране. Это определяет подопция Reduce Clearance Display Area на странице PCB Editor - Interactive Routing диалогового окна Preferences.

Согласование длин дифференциальных пар

Дифференциальные пары часто используются в быстродействующих проектах благодаря своей устойчивости к помехам и упрощению задачи получения высококачественного возвратного пути сигналов. Однако, как и для однопроводных сигналов, необходимо управлять их длинами для обеспечения требований к синхронизации.

В процессе трассировки дифференциальной пары, длина каждой из двух цепей отображается в строке состояния, а также в информационном окне Head-Up display (Shift+H для включения/отключения). Значения длин, отображаемые в панели PCB обновляются при выходе из трассировки пары.

Use the Heads Up display to check the route lengths during differential pair routingТекущая длина трасс каждой цепи в паре отображается в информационном окне Head-Up display (Shift+H для включения/отключения).

Правила проектирования Matched Length и Length

Для обеспечения требований к времени прохода сигналов и синхронизации можно задать правила проектирования Length и Matched Length. Эти правила можно использовать как в процессе проверки правил проектирования (DRC), так и при интерактивной подстройке длины.

Правило Matched Length обнаруживает наиболее длинную пару, попадающую в область действия правила, и использует значение средней длины (Average Length) этой пары в качестве базы для сравнения с другими целевыми парами, требуя чтобы их длины попадали в допуск, определенный в этом правиле. Значение Average Length показано в панели PCB в режиме Differential Pairs Editor .

Правила проектирования внутри пары и между парами

Могут быть требования к согласованию длины между парами, а также внутри каждой пары.

Для этого необходимо создать подходящее правило проектирования Matched Length:

  1. Создайте правило проектирования Matched Length, которое необходимо применить между множеством пар (осуществляется путем выбора параметра Group Matched Lengths). Задайте область действия правила, чтобы применить его к требуемым парам, как показано на изображении ниже слева.
  2. Создайте еще одно правило Matched Length, которое необходимо применить внутри пары (осуществляется путем выбора параметра Within Differential Pair Length). Это правило обеспечит соответствие длин двух цепей внутри каждой пары с необходимым допуском. Область действия этого правила также необходимо определить таким образом, чтобы оно действовало на требуемые пары, как показано на изображении ниже справа. Приоритет этого правила должен быть выше, чем у правила, применяемого между парами.

Matched Length design rule, configured to check the lengths between targetted pairs Matched Length design rule, configured to check the lengths within each targetted pair
Для дифференциальных пар было определено два правила согласования длины – одно между парами (слева), другое внутри пар (справа).

Подстройка длины дифференциальных пар

Главная страница: Подстройка длины

Подстройка длины пар и цепей внутри каждой пары осуществляется с помощью двух команд подстройки длины. Для подстройки длины:

  1. Длина дифференциальной пары может быть точно подстроена с помощью команды Interactive Diff Pair Length Tuning в меню Route. В процессе подстройки можно использовать сочетания для интерактивного изменения стиля и размера меандра, либо использовать клавишуTab для перехода панель Properties в режиме Differential Pair Length Tuning. В панели целевая длина определяется:
    • Вручную – введите значение в поле Target Length.
    • Из выбранной пользователем существующей дифференциальной пары.
    • Из применяемого правила проектирования Length и Matched Length.
  2. Для подстройки цепи внутри пары используйте команду Interactive Length Tuning в меню Route. При попытке подстроить длину более длинной цепи в паре появится сообщение Target Length Shorter than Old Length (Целевая длина меньше старой длины).

The Length Tuning Gauge is used to check that the tuned length is within the rule requirements
Сначала подстройте длины дифференциальных пар, затем длину более короткой цепи внутри пары.

Если в процессе подстройки длины не появляются меандры, нажмите клавишу Tab, чтобы открыть панель Properties в режиме Differential Pair Length Tuning и убедитесь, что параметры в области Pattern корректны. Например, если значение Max Amplitude очень большое, система может не разместить меандр.
Перейдите на страницу Подстройка длины, чтобы узнать больше. Здесь вы сможете найти подробный список сочетаний для изменения стиля, амплитуды и шага меандра. На той странице также приводится объяснение, каким образом система решает, какому правилу следовать, если настройки правил проектирования Length и Matched Length перекрывают друг друга.

Удаление меандра

Меандры для подстройки длины дифференциальной пары состоят из множества коротких сегментов трасс и дуг. Их можно выделить и удалить вручную, но как правило более эффективно провести новую трассу поверх них – функция удаления петель удалит лишний сегменты трасс/дуг.

Length tuning accordions can be removed by re-routing over the top of them
Использование удаления петель для удаления меандров.

Для дальнейшего изучения

Благодарность Роберту Феранеку (Robert Feranec) из FEDEVEL Academy (www.fedevel.com) за возможность использования платы iMX6 Rex в качестве изображений на этой странице (http://www.imx6rex.com/).
Обнаружили проблему в этом документе? Выделите область и нажмите Ctrl+Enter, чтобы оповестить нас.

Связаться с нами

Связаться с нашими Представительствами напрямую

We're sorry to hear the article wasn't helpful to you.
Could you take a moment to tell us why?
200 characters remaining
Вы сообщаете о проблеме, связанной со следующим выделенным текстом
и/или изображением в активном документе: