联系我们
联系原厂或当地办公室
打开任何电子产品,内部均有一个印刷电路板(PCB)。 印刷电路板提供了构成设计的电子元器件的机械安装,以及这些元器件之间的电气连接。 半个世纪以来,PCB已经在电子行业得到了广泛应用,并且已经发展成为由熟练工程师创建并使用专业工艺制造的复杂项目。
尽管了解PCB制造方式对于设计人员而言并非强制要求,但那些掌握相关工艺的人员能更好地设计出成本更低、制造成品率更高的PCB。
以下章节将介绍各种类型的PCB(从单面板到刚柔结合板)以及所有PCB制造过程中常见因素的关键元素。
制造的最简单的PCB称为单面PCB,因为这种电路板只有一面(通常为底面)有导线。
单面PCB有针对顶面元器件及底面焊接的空间。
单面PCB的使用方式与所有PCB的使用方式大致相同,即称为芯板的绝缘基板。 芯板可以由多种材质制成,具体取决于最终电路的所需特性,但最常见的材料是玻璃纤维。
在芯板的一面完全涂覆薄铜层。 在钻完将用于安装元器件的孔之后,使用化学蚀刻工艺清除多余的铜,留下将电气连接电路元器件所需的走线和焊盘。
电路板的顶面被称为元件面,因为通孔元器件通常安装在此面。由此元器件的引线可以穿过电路板伸出底面,从而更轻松地将引线焊接到铜焊盘和走线上。 此规则不适用于表面贴装元器件,因为这类元器件需要直接安装在铜焊盘上,且只存在于焊接面。
双面PCB比单面PCB稍复杂,在芯板的顶面和底面均有铜线。 这使得布线更复杂。 按照惯例,通孔元器件仍安装在顶层,表面贴装元器件安装在底层,如同单面PCB一样。
双面PCB在电路板的顶面和底面均有传导走线。
双面电路板通常依赖通孔元器件的引线来提供顶层和底层之间的电路连接。 但是,这不可能始终可行,因为走线有时需要在与元器件引线不重合的位置处穿过顶层和底层。因此,双面PCB的常见附加件是电镀通孔(PTH)。
带电镀通孔的双面PCB。
在钻孔后通过电解工艺使铜在孔内沉积,可实现通孔电镀。 这在顶层和底层的铜之间产生传导路径,而不依赖于通孔元器件的引线。
大多数PCB元件均采用波峰焊接或回流焊接工艺进行焊接。 无论采用哪种方式,除非使用阻焊层,否则相邻走线之间可能发生焊接桥接。 顾名思义,阻焊层提供了一种排斥力(或掩模),有助于阻止焊料在电路板区域随意粘附铜,引起故障。 第二个好处在于阻焊层还可以防止PCB走线上暴露的铜发生腐蚀。
带电镀通孔和阻焊层的双面PCB。
虽然几乎任何颜色都有可能,但传统上阻焊层是绿色的,因此大多数人一想到电路板就认为是绿色的。 使用精密丝网印刷工艺将PCB的顶层和底层涂覆阻焊层。
当需要将公司标识、部件编号或说明等可视化信息涂覆到电路板上时,可通过丝印技术将文本施加到电路板的外表面。 丝印信息通常为白色,以便与所选阻焊层形成对比,但是可以使用任何颜色。 如果空间允许,丝印文本可以说明元器件标号、开关设置要求以及协助组装过程的其它功能。
目前为止,仅描述了包含一个或两个铜层的PCB,但是可以创建包含更多铜层的PCB。 这些PCB被称为多层PCB,它们可以提供更密集的布线拓扑以及更优良的电气噪声特性。 多层PCB的每个层将是信号层或平面层。
PCB的分解图中包括红色,浅绿色和浅棕色的信号层,以及绿色和深褐色的平面层。
多层PCB可以通过几种不同的方式制造,但最简单的方法是将多个薄的双面PCB层压在一起,在每个PCB之间使用预浸料层。
双面PCB与预浸料层的比例可以根据成本、重量和机电考虑进行定义。 以下场景说明了示例8层电路板的层堆栈的变化。
偏向外层对的8层电路板。
在该层堆栈中,所有四个芯板上的铜皮可以同时蚀刻,接着将这些铜夹在(层压)预浸料层周围。 此PCB需要最简单的制造工艺。
偏向内层对的8层电路板。
在该层堆栈中,三个芯板上的铜皮可以同时蚀刻,但外部预浸料层和铜层必须单独加入,作为层压工艺的一部分。 接着,PCB作为一个整体必须再次经过蚀刻工艺,以便清除最新添加的外层上多余的铜。
由单个芯板、多个预浸料层构成的8层PCB。
在该层堆栈中,通过多个预浸料和铜层逐渐构建单个PCB芯板。 每次添加新的预浸料和铜层时,PCB必须再次经过蚀刻工艺,以便清除最新添加的外层上多余的铜。 对于6个不同的预浸料层,该工艺将按顺序进行。由于电路板必须经过铜蚀刻工艺的次数太多,该PCB需要最复杂的制造工艺。
Bec 因为可以单独蚀刻、钻孔和电镀用于创建多层PCB的芯板,所以在将其层压至完整的堆栈前,可以创建仅连接至内层且不存在于最终电路板一面或双面表面上的过孔。 这意味着此时可将PCB外层上过孔所占用的接触面积用于布线。 这类过孔包括:
尽管在高级PCB设计中使用盲孔和埋孔越来越常见,但需认真考虑PCB的层叠,确保电路板实际上可以制造。 考虑下图中的层叠,包含3个夹在2个预敷料层之间的双面芯板。 同时,考虑不知情的工程师所要求的过孔布局。
过孔布局不具有可行性,因为不可能钻出(和电镀)仅穿过预浸料层的孔。 因此,在上图中,无法钻出第3个和第5个过孔(从左数起)。 为了克服这一问题,您将需要钻穿一个相邻的芯板层并使用精确的深度控制来创建更合理的设计,如图所示。
尽管上述设计更为合理,但它限制了将各层层压在一起的方式,而且一些PCB制造商可能不允许这种做法。 总之,所提出的建议不一定可行。 工作流应遵循以下内容:
这个过程比较复杂,需要多次通过钻孔、电镀和层压工艺。 更好的选择是一次性将所有芯板层压在一起并使用受控深度钻孔来创建两个盲孔,将上述步骤2-4简化为一个步骤,如下图所示。
最后,如果指定制造商无法提供受控钻孔深度,则除了在预浸料层需要过孔连接的点处一直钻电路板外,别无它法,如下图所示。
显然,这意味着过孔在PCB外层所占据的接触面积无法再用于布线,但是这可能是可以以合理价格制造PCB设计所必需的折衷方案。
刚柔结合电路板是柔性电路和刚性电路组合的印刷电路的名称。 这种组合非常适合同时利用柔性电路和刚性电路的优势:刚性电路可以承载全部或大部分元器件,而柔性段充当刚性段之间的互联。
通过柔性段连接PCB的刚性段,可设计复杂的混合型PCB,该PCB可以根据外壳进行折叠。
柔性电路由柔性基板材料和铜皮叠层制成,通过粘合剂、高温和压力层压在一起。 下图显示了柔性电路的简化视图,其中的构成元件归纳如下:
有许多可用于柔性电路和刚柔结合电路的标准叠层,称之为类型。 这些类型归纳如下:
1类柔性结构,带2个覆盖层,两侧有进接孔,元器件孔没有电镀。
功能概要 |
---|
一个导电层,或者层压在两个绝缘层之间,或者在一侧未覆盖。 |
导体的进接孔可以在一侧或两侧 |
元器件孔没有电镀。 |
可以使用元器件、加强件、引脚和连接件。 |
适用于静态和动态柔性应用。 |
功能概要 |
---|
两个导电层之间有绝缘层;外层可以有覆盖物或裸焊盘。 |
电镀通孔可提供各层之间的连接。 |
可以在一侧或两侧设置没有覆盖物的进接孔或裸焊盘。;两侧的过孔可以覆盖。 |
可以使用元器件、加强件、引脚和连接件。 |
适用于静态和动态柔性应用。 |
功能概要 |
---|
三个或多个导电层,各层之间有柔性绝缘层;外层可以有覆盖物或裸焊盘。 |
电镀通孔可提供各层之间的连接。 |
可以在一侧或两侧设置没有覆盖物的进接孔或裸焊盘。 |
过孔可以是盲孔或埋孔。 |
可以使用元器件、加强件、引脚和连接件。 |
通常用于静态柔性应用。 |
4类刚柔结构,刚性段是通过将刚性层添加至柔性结构外侧形成的。
功能概要 |
---|
三个或多个导电层,各层之间有作为绝缘体的柔性或刚性绝缘材料;外层可以有覆盖物或裸焊盘。 |
电镀通孔延伸穿过刚性层和柔性层(不包括盲孔和埋孔)。 |
可以在一侧或两侧设置没有覆盖物的进接孔或裸焊盘。 |
过孔或互联可以完全覆盖,以实现最大绝缘性能。 |
可以使用元器件、加强件、引脚、连接件、散热器和安装支架。 |
PCB的制造过程相当简单,虽然各制造商可能略有不同,但了解此过程如何运作将有助于您创建不太可能遭受制造问题的PCB。 下面给出了标准多层PCB(非柔性或刚柔结合)制造工艺的详细分步流程。
以下各节提供了更加图形化的视图,涉及不同层数的PCB裸板的制造过程。
无论您想制造哪一种PCB(刚性或刚柔结合),首先要做的是根据需要确定叠层。 在Altium NEXUS的PCB编辑器中,在Layer Stack Manager对话框中定义所有叠层(Design » Layer Stack Manager) 新电路板的默认单一堆栈包括: 一个介电芯、两个(信号)铜层以及顶部和底部阻焊/覆盖层,如下图所示。
在Layer Stack Manager对话框中执行层堆栈管理。 其中将显示新电路板的默认单一堆栈。
有关在Altium NEXUS中定义电路板层堆栈的更多信息,请参阅定义层堆栈。
联系原厂或当地办公室