Contact Us
Contact our corporate or local offices directly.
The following topics are covered:
This information assumes you have a working knowledge of the schematic and PCB editor environments and are familiar with placing and editing components.
Schematic component symbols are created in schematic libraries (*.SchLib). The components in these libraries then reference footprints and other models defined in separate footprint libraries and model files. As a designer, you can place components from these discrete component libraries or you can compile the symbol libraries, footprint libraries and model files into integrated libraries (*.IntLib).
The advantages of integrated libraries are that they are portable (everything is in one file) and the components and models in them cannot be edited. The bulk of components (around 70,000 ISO-compliant components) are supplied in integrated libraries, which you will find in the Library folder of your Altium Designer installation. You can extract the source libraries out of an integrated library. To do this, open the integrated library and choose Extract Sources to extract the source libraries, which will then be opened for editing. For more information, refer to Working with Integrated Libraries.
You also can create a schematic library of all the components that have been placed in the schematic documents of the active project by clicking Design » Make Schematic Library.
The Schematic Library editor is used to create and modify schematic components and manage component libraries. It is similar to the Schematic Editor and shares the same graphical design objects, with the addition of the Pin tool. Components are created with the design objects in the Schematic Library editor. Components can be copied and pasted from one schematic library to another or from the schematic editor to the schematic library editor.
Before we start creating components, we need a new schematic library in which to store them. This library could be created as a stand-alone library, referencing models in separate files. An alternate approach is to create the new schematic library with the intention of compiling it and the referenced models into an integrated library package. This means that before we create the library, we need to create a new library package. A library package (*.LibPkg) is the basis of an integrated library - it binds together the separate schematic libraries, footprint libraries and model files that are ultimately compiled into the single integrated library file.
The new library, open at the default Component_1.
To create a new integrated library package and an empty schematic library, complete the following steps:
To create a new schematic component in an existing library, you would normally select Tools » New Component. However, since a new library always contains one empty component sheet, we will simply rename Component_1 to get started on creating our first component, an NPN transistor.
The Snap Grid and Visible Grid also can be configured on the Schematic - Grids page of the Preferences dialog.
If the schematic library editor grid is not visible, press Page Up to zoom in until it is visible. Note that zooming occurs around the cursor, so keep the cursor close to the origin as you zoom in.
The Line button on the Active Bar (left) and the Utilities toolbar drop-down (right).
Using the following image and the grid lines as guides, place the vertical line. Click once to place the first end of the line then move the cursor to the location of the other end and click to place it, then right-click or press Esc to end placement of the line. Note that you are still in line placement mode as indicated by the crosshair on the cursor.
Placed NPN body
The Polygon button on the Active Bar (left) and Utilities toolbar drop-down (right)
Before placing, press the Tab key to open the Properties panel to define the Polygon properties. Set Border to Smallest, ensure Transparent is not enabled, and set the Fill Color and the Border color boxes to the same color as shown in the following image.
In the workspace, click to place each vertex of the triangle (arrowhead) then right-click to end. Right-click or press Esc to end polygon placement mode. Double-click the placed polygon to open the Properties panel. In the Vertices region, set the vertices for the placed polygon.
Component pins give a component its electrical properties and define connection points on the component. They also have graphical properties. To place pins on the component:
Review and edit all pins in the Component Pin Editor dialog.
Each component has properties associated with it such as the default designator, the PCB footprint and/or other models, and any parameters that have been defined for the component. Perform the following steps to set the component's properties:
You can add any number of PCB footprint models to a schematic component, as well as model files that are used for circuit simulation and signal integrity analysis. If a component has multiple models (for example, multiple footprints), you can select the appropriate model in the Properties panel when you place the component on a schematic. In terms of sourcing the models, you can create your own or download a vendor's model file from the web. PCB libraries can include any number of PCB footprints.
Wherever possible, Spice models used for circuit simulation (.ckt and .mdl files) are included in the supplied integrated libraries in the Library folder of your Altium Designer installation. If you are creating a new component, you would typically source the Spice model from the device vendor's website. You can also use the XSpice Model Wizard (Tools » XSpice Model Wizard) to create certain Spice model types to add to the component.
The Schematic library editor's Model Manager dialog (Tools » Model Manager) enables you to view and organize your component models. For example, you can add the same model to multiple, selected components. Alternatively, you can add models to the current component by using the Add drop-down in the Parameters region of the Properties panel in Component mode then selecting the model, or from the Model region of the workspace (click the upside-down arrows/caret symbol on the bottom-right of the workspace as shown in the following image).
Click the highlighted caret symbol to access the Model region of the workspace.
When you add a model to a component in the schematic library editor, the model is linked; the model data is not copied or stored in the schematic component. This means the linked models must be available both during library creation and when the component is placed on a schematic sheet. When you are working in the library editor, the link from the component to the model information is resolved using the following valid search locations:
Refer to the Understanding Models, Components and Libraries document for more information about the way models are searched for in the schematic library editor and the schematic editor.
In this document, we will use different methods of linking the components and its model files. When the library package is compiled to create the integrated library, the various models are copied from their source locations into the final integrated library.
First, we will add the model that represents the component in the PCB Editor, i.e. the footprint (also known as a 'pattern' or 'decal' in other design tools). The footprint we will use for our schematic component is named "BCY-W3". When linking a PCB footprint model to a schematic component in the schematic library editor, the model must exist in a PCB library, not an integrated library.
Select the desired footprint in the Browse Libraries dialog.
Component parameters are a means of defining additional information about the component. This could include data your company needs in the BOM, manufacturer's data, a reference to the component datasheet, or design instruction information, such as design rules or assignment to a PCB class, etc. Parameters can be used to add any useful information that you might need for a component and are configured in the Properties panel.
Use the following steps to add a parameter to a schematic component:
Parameters can be used to create links from the component to reference material, such as data sheets. Linkage is established by adding specific component parameters. One approach is to use the F1 key to access a referenced document. The other, which caters to multiple references, uses the right-click context menu.
If a component includes a parameter with the reserved name HelpURL, then the URL will be resolved when the F1 key is pressed while the cursor is hovering over the component. The URL can actually be a web address, a text file, or a PDF file.
The second technique supports multiple links and naming of each link. In this situation, you add a pair of parameters: one that points to the linked document or URL and a second that defines a label (or description) for the link. The parameter pairs are defined as follows.
|
Parameter Name |
Example Parameter Value |
---|---|---|
1 st parameter |
ComponentLink1URL |
C:_ _My Datasheets\XYZDatasheet.pdf |
2 nd parameter |
ComponentLink1Description |
Datasheet for XYZ |
1 st parameter |
ComponentLink2URL |
C:_ _My Datasheets_ _Alternate XYZDatasheet.pdf |
2 nd parameter |
ComponentLink2Description |
Datasheet for Alternate XYZ |
Any number of links can be defined using the same parameter pair with the number incremented. When you right-click on a component that uses datasheet linking, a Reference menu entry appears with an entry for each component link in the sub-menu.
There might be instances when you need to define a placeholder that will be populated with text at a later time. For example, you might want a parameter called DesignedBy on a schematic template whose value is defined when the template is used for a new schematic. Altium Designer uses a technique known as string indirection to support this requirement. At the schematic sheet level, you can add a document parameter whose value is left blank. You then place a standard string on the document, as an example, "=DesignedBy
". The equal sign sets this string to be an indirection string. Instead of displaying the text, it will display the current value of the document parameter DesignedBy.
String indirection also can be used with components. As well as displaying any parameter that has been added to the component in its own right by enabling the option, you also can indirect the string to the component's Comment field. One situation where string indirection is useful is for a component that is used for both PCB design and circuit simulation. During schematic-to-PCB design transfer, the schematic Comment field is mapped to the Comment field of the PCB component. However, for circuit simulation, the Comment field is not used since the simulator can require many properties for a component. For example, a BJT has five simulation properties and these five properties instead are defined as parameters. In this case, any of the circuit simulation parameters can be mapped to the Comment field using string indirection by entering the name of the parameter preceded by an equal sign ("="). For example, a resistor has one simulation parameter, called Value. If the resistor's Comment field is set to =Value , then the contents of the Value parameter will be displayed as the Comment. If you are tuning the resistance value during simulation, the correct resistance will be used when you transfer the design to PCB layout.
To check that the new components have been created correctly, there are three reports that can be generated. Ensure the library file is saved before the reports are generated.
The Component Rule Checker tests for errors such as duplicates and missing pins.
libraryname.ERR
> displays in the workspace that lists any components that violate the rule check.The Component Report lists all the information available for the active component.
To create a extensive report of each component in the library:
You also can copy components to your schematic library from other open schematic libraries and then edit their properties as required. If the component is part of an integrated library, you will have to open the .IntLib file and choose Yes to extract the source libraries. Then open the generated source library (*.SchLib) from the Projects panel.
You also can use the SCH Library panel to copy multiple components. Select the components in the panel using the standard Ctrl+Click or Shift+Click features, then right-click on one of the selected components and choose Copy from the pop-up menu. You can then right-click in the list and:
The transistor symbol that you have created represents the entire component - this symbol represents what is supplied in the physical package delivered by the device manufacturer. There are situations where one physical component is better represented as a collection of parts. For example, there are resistor networks that contain eight individual resistors and each can be used independently of the others. Another example would be a 74F08SJX quadruple 2-input AND gate - in this device, there are four independent 2 input AND gates. While the component could be drawn as a single symbol showing all four gates, it would be more useful if it is drawn as four separate gates, where each gate can be placed independently of the others anywhere on the schematic. This approach of drawing a component as a set of separate parts is referred to as a multi-part component.
This section outlines the steps to create a 74F08SJX Quad 2-IN AND gate. We also will create an alternate view mode for the component, i.e. an IEEE representation of the device.
The new component name displays in the list in the SCH Library panel and an empty component sheet displays with a crosshair through the center (origin) of the sheet.
The body of this component is constructed from a multi-segment line and a circular arc. Make sure the component sheet origin is in the center of the workspace by selecting Edit » Jump » Origin (shortcut: J, O). Also, make sure the grid is visible (View » Grids).
Placing an arc is a four-step process that sets the center point, radius, start angle, and end angle of the arc. You can press Enter instead of click to place the arc.
Add the pins using the same technique described in the Adding Pins to a Schematic Component section earlier in this document. Configure Pins 1 and 2 with an Electrical Type of Input and Pin 3 is Output. Set the pin Length to 20. The completed part is shown below.
To define the power pins, you can create a fifth part for the component and place the VCC and GND pins on that part. Remember to enable the option in the Properties panel to ensure that it cannot be swapped with any of the gates during re-annotation.
You can add many alternate view modes to a component part. These view modes can contain different graphical representations of the component, such as a DeMorgan or an IEEE representation. Each alternate view mode should always have the same set of pins as the Normal mode. If an alternate view of a part has been added, it is displayed for editing in the schematic library editor by selecting the alternate mode from the Mode drop-down in the Mode toolbar.
To add an alternate view mode, with the component part displayed in the design window of the schematic library editor:
If a graphical IEEE representation needs to be added to the component, Altium Designer includes a selection of IEEE symbols. To access and place the symbols, use the IEEE Symbols toolbar (shown below) or click Place » IEEE Symbols.
Footprints are always built on the top side, regardless on which final side of the board they are placed. Layer-specific attributes, such as surface mount pads and solder mask definitions, are automatically transferred to appropriate bottom-side layers when you flip the footprint to the other side of the board during component placement.
This section covers the following topics:
Footprints can be copied from the PCB editor into a PCB library, copied between PCB libraries, or created from scratch using the Footprint Wizard or drawing tools. If you have a PCB design with all the footprints already placed, you could use the Design » Make PCB Library command in the PCB editor to generate a PCB library that includes only those footprints. Altium Designer also includes comprehensive libraries (*.PcbLib) of predefined through-hole and SMD component footprints for use in designing PCBs.
The footprints that are created manually in this section are only to illustrate the procedures required; they are not dimensionally accurate. Always check the specifications of a new footprint against the manufacturer's datasheet.
To create a new PCB library:
PCBComponent_1
displays.You are now ready to add, remove, or edit the footprint components in the new PCB library using the PCB library editor commands.
The PCB library editor includes a Footprint Wizard that will build a component footprint using information you supply. We will use the Wizard to create a footprint for a DIP14.
Perform the following steps to create the new component footprint DIP14 using the Footprint Wizard:
You also can create component footprints using the IPC Compliant Footprint Wizard. Rather than requiring you to enter the properties of the pads and tracks that are used to define the footprint, the IPC® Compliant Footprint Wizard takes the actual component dimensions as its inputs. Based on the formulae developed for the IPC-7351 standard, the Wizard generates the footprint using standard Altium Designer objects, such as pads and tracks. The Wizard is launched from the PCB library editor by clicking Tools » IPC Compliant Footprint Wizard. Click Next to progress through the pages of the Wizard, setting the options as desired on each page.
The IPC Compliant Footprint Wizard builds the footprint based on the component dimensions.
Footprints are created and modified in the PCB library editor using the same set of tools and design objects available in the PCB editor. Anything can be saved as a PCB footprint, including corner markers, phototool targets, and mechanical definitions. Once a footprint has been placed onto a PCB, you can set the Type property, defining it as Graphical or Mechanical if required.
To create the component footprint, we will place pads to form the component pin connections then place tracks and arcs for the outline. Design objects can be placed on any layer, however, the outline is normally created on the Top Overlay (silkscreen) layer and the pads on the multi-layer (for thru-hole component pins) or the top signal layer (for a surface mount component pins). When you place the footprint on a PCB, all objects that make up the footprint will be assigned to their defined layers.
To manually create a footprint suitable for the NPN transistor:
The Properties panel in Pad mode includes a viewer in the Pad Stack region that allows you to inspect the pad shapes on the defined layers (select the desired layer from the Layer drop-down in the Properties region of the panel). You can define normal round, rectangular, octagonal, rounded rectangle (oval), or Hole Size in pads and toggle their Plated property and all the work needed to support thermal reliefs generation, clearances calculation, output to Gerber, ODB++, and NC Drill, for example, will be automatically handled. The NC Drill Output (NC Drill Excellon format 2) will generate up to six different NC files for three different hole kinds and whether or not they are plated or non-plated.
To place the pads:
Pads can be labeled with a designator (usually representing the component pin number) of up to 20 alphanumeric characters. The designator can be left blank if desired. If the designator begins or ends with a number, the number will auto-increment when placing a series of pads sequentially. To achieve alpha increments, e.g,. 1A, 1B, or numeric increments other than 1, use the Setup Paste Array dialog (click the Paste Array button in the Paste Special dialog (Edit » Paste Special)).
By setting the designator of the pad prior to copying it to the clipboard, you can use the Setup Paste Array dialog to automatically apply a designation sequence during pad placement. By using the Text Increment field in the Setup Paste Array dialog, the following pad designator sequences can be placed:
To increment numerically, set the Text Increment field to the amount by which you want to increment. To increment alphabetically, set the Text Increment field to the letter in the alphabet that represents the number of letters you want to skip. For example, if the initial pad has a designator of 1A, set the field to A, (first letter of the alphabet) to increment designators by 1. If you set the field to C (third letter of the alphabet), the designators will become 1A, 1D (three letters after A), 1G, etc.
The outline that appears on the PCB silkscreen is defined on the Top Overlay layer. If the component is flipped to the bottom of the board during placement, the overlay is automatically transferred to the Bottom Overlay layer.
There will be situations when you need to create a footprint with pads that have an irregular shape. This can be done using any of the design objects available in the PCB library editor, but there is an important factor that you must keep in mind. The software automatically creates solder and paste masks based on the shape of pad objects. If you use pad objects to build an irregular shape, the matching irregular mask shape will be generated correctly. If you build the irregular shape from other objects, such as lines (tracks), fills, regions, or arcs, you also will need to define any required solder or paste masks by placing suitably enlarged or contracted objects on the solder mask and paste mask layers.
Managing Components that Include Routing Primitives in their Footprint
When you transfer a design, the footprint specified in each component is extracted from the available libraries and placed on the board. Then each pad in the footprint has its net property set to the name of the net connected to that component pin in the schematic. If the footprint includes copper primitives touching the pads, these primitives will not be assigned the net name automatically and will create a design rule violation. In this case, you will need to perform an update process to assign the net name. The PCB editor includes a comprehensive net management tool that is launched by selecting Design » Netlist » Configure Physical Nets from the main menus. In the Configure Physical Nets dialog, click in the New Net Name region to select the net to assigned to the unassigned primitives.
The footprint shown in the image below has multiple pads that are connected to the same logical schematic component pin. For this component, both of the two mounting hole pads have the same designator of '3'. When the Design » Update PCB command is used in the schematic editor to transfer design information to the PCB, the resulting synchronization will show the connection lines going to both pads in the PCB Editor, i.e. they are on the same net. Both of these can be routed.
TO-3 footprint showing two pads with a designator of 3 on the same net.
The footprint shown in the following image is the contact set for a push button switch, which is implemented directly in the copper on the surface layer of the PCB.
Printed push button footprint, designed by placing pads, lines and arcs.
A rubber switchpad overlay is placed on top of the PCB with a small captive carbon button that contacts both sets of fingers in the footprint when the button is pressed, creating the electrical connectivity. For this to happen, both sets of fingers must not be covered by the solder mask. The circular solder mask opening has been achieved by placing an arc whose width is equal to or greater than the arc radius, resulting in the solid circle shown behind the two sets of fingers. Each set of copper fingers has been defined by an arc, horizontal lines, and a pad. The pads are required to define the points of connectivity. Manually placed solder mask definitions are automatically transferred when the component is placed on the bottom of the board.
Solder and paste masks are created automatically at each pad site on the Solder Mask and Paste Mask layers, respectively. The shape that is created on the mask layer is the pad shape, expanded or contracted by the amount specified by the Solder Mask and Paste Mask design rules set in the PCB editor or as specified in the Properties panel in Pad mode.
Pads with the solder mask displayed.
When you edit a pad, you see the settings for the solder mask and paste mask expansions. While these settings are included to give you localized control of the expansion requirements of a pad, you will not normally need them. Generally, it is easier to control the paste mask and solder mask requirements by defining the appropriate design rules in the PCB editor. Using design rules, one rule is designed to set the expansion for all components on the board, then, if required, you can add other rules that target any specific situations, such as all instances of a specific footprint type used on the board, or a specific pad on a specific component, etc.
Displaying the Masks
To check the solder and/or paste masks have been automatically defined in the PCB library editor, click the Top Solder layer tab at the bottom of the main design window and examine the contents.
To make the mask layers visible, open the View Configuration panel and enable the for each mask layer.
The ring that appears around the edge of each pad in the color of the Top Solder Mask layer represents the edge of the solder mask shape protruding by the expansion amount from under the multi-layer pad because multi-layer is at the top of the layer drawing order; it is drawn on top. The Layer Drawing Order is set on the PCB Editor - Display page of the Preferences dialog).
Setting Mask Expansions by Design Rules
To set the mask expansions in the design rules:
Manually Specifying Mask Expansions
To override the expansion design rules and specify a mask expansion as a pad attribute:
Default Designator and Comment Strings
What you are building in the library is a footprint. When that footprint is placed on a board, it is given a designator and comment and is then referred to as a component. You do not need to manually define placeholders for the designator and comment strings when you build the footprint since these are added automatically when the footprint is placed on a board. The locations of these strings are determined by the designator and comment string Autoposition options in the Properties panel in Parameter mode when the designator or comment string is selected in the workspace. You can pre-define the required string position (and size) on the PCB Editor - Defaults page of the Preferences dialog.
Additional Designator and Comment Strings
There may be situations when you would like additional copies of the designator or comment strings. As an example, your assembly house wants a detailed assembly drawing with the designator shown within each component outline, while your company requires the designator to be located just above the component on the component overlay on the final PCB. This requirement for an additional designator can be achieved by including the .Designator special string in the footprint (there is also a .Comment special string). To satisfy your assembly house requirement, you would place the .Designator string on a mechanical layer in the library editor, then generate a printout that included this layer. If you need this feature:
There are a number of special requirements a PCB component can have, such as needing a glue dot or a peel-able solder mask definition. Many of these special requirements will be tied to the side of the board on which the component is mounted, and must flip to the other side of the board when the component is flipped. Rather than including a large number of special purpose layers that may rarely be used, Altium Designer's PCB editor supports this requirement through a feature called layer pairs. A layer pair is two mechanical layers that have been defined as a pair. Whenever you flip a component from one side of the board to the other, any objects on a paired mechanical layer are flipped to the other mechanical layer in that pair. Using this approach, you select a suitable mechanical layer to include the glue dot (or other special requirement) and define its shape using the available objects. When you place that footprint onto a board, you must set up the layer pairing. This instructs the software which layer it must transfer objects to when this component is flipped to the other side of the board. You cannot define layer pairs in the PCB library editor; this is done in the PCB Editor.
Given the density and complexity of today's electronic products, today's PCB designer must consider more than the horizontal component clearance requirements. You must also consider height restrictions and component-under-component placement options. There is also the need to transfer the final PCB to a mechanical CAD tool where a virtual product assembly can verify the complete packaging of the product being developed. Altium Designer includes a number of features, including realistic 3D visualization for these different situations.
At the simplest level, you can add a height attribute to your footprint. To do this, double-click on the footprint in the Footprints list in the PCB Library panel to open the PCB Library Footprint dialog. Enter the desired height for the component in the Height field.
Height design rules can be defined during board design (click Design » Rules in the PCB editor), typically testing for maximum component height in a class of components or within a room definition.
For more realistic component rendering in 3D view mode, you can add 3D body objects to the footprint. 3D bodies can be added to a footprint on enabled mechanical layers only. An extruded (simple) 3D body is a 2D polygon-type object that has surface color and a height attribute to pull or extrude the shape when rendered in 3D. 3D bodies can also be created as spheres or cylinders. One or more 3D bodies can be combined to define the physical size and shape of a component in all directions and are used by the Component Clearance design rule. Using high accuracy 3D models improves component clearance checking accuracy and generally improves the visual appeal and realism of the finished PCB assembly. Altium Designer supports directly importing 3D STEP models (*.step or *.stp files), Parasolid Models (*.x_t
and *.x_b
), and SolidWorks parts (*.SldPrt
) into PCB footprints to render the 3D model. This functionality extends to having models either embedded or linked to Altium Designer PCB documents, however, linked models are not available in the PCB library editor.
Manually Placing 3D Bodies
3D bodies can be placed manually in the PCB library editor by clicking Place » 3D Body from the main menus or by selecting from the Active Bar. They also can be added automatically to footprints in the PCB library editor (and to placed footprints in the PCB editor) using the Component Body Manager dialog (Tools » Manage 3D Bodies for Current Component).
We will now add a 3D body to footprint DIP14, which was created previously in this document. To manually place a 3D body in the PCB Library Editor:
DIP-14 3D representation
Interactively Creating 3D Bodies
Interactively creating 3D body objects from a footprint is very similar to the manual method. The basic difference is to use Altium Designer to detect closed shapes that can be used to "extrude" into 3D bodies from the existing objects that comprise the footprint details. This is accomplished through the Component Body Manager dialog.
The Component Body Manager dialog is used to define a 3D body for the transistor package TO-39. Using this approach is easier than attempting to define the shape manually because of the curved shape and orientation tab of the package body. To use the dialog:
Many component vendors supply detailed 3D models for use in popular mechanical CAD packages. Altium Designer can import 3D STEP models (.step or .stp), SolidWorks parts (*.SldPrt
), and Parasolid Models (*.x_t
and *.x_b
) directly into a component footprint. This saves time in creating the model yourself and also may provide a more sophisticated model.
Linked Models
Linked models are not supported in the PCB library editor. Embedded models are supported.
Importing Models
To import a model, perform the following steps:
Positioning and Orienting Models
When a model has been imported, the placeholder 3D body re-sizes to house the model. The model may not be oriented correctly in relation to the axes of the PCB document due to the origin used in the originating application. There are several methods for graphically positioning models, using reference points (known as snap points) placed on the model to manipulate it, and using faces or surfaces on the model in relation to the board.
You can copy existing footprints into your PCB library. The copied footprint can then be renamed and modified to match the specifications required. The following are different ways to copy existing footprints to your PCB library:
As in the schematic library editor, there are a series of reports that you can run to check that the footprints have been created correctly and identify which components are in the current PCB library. To compile all components in the current PCB library, run the Component Rule Check report. The Component Rule Check tests for duplicate primitives, missing pad designators, floating copper, and inappropriate component reference. To run the Component Rule Check:
In this tutorial, you have:
The final task is to compile the Library Package to create an integrated library, which creates a single file that includes the components and all their referenced models. Even if we do not want to use the integrated library and prefer to work directly from the source library and model files, there is an incentive to compile the Library Package. Compiling will perform an extensive set of checks on the components and the component-to-model relationships.
To compile the Library Package:
For more detailed information about integrated libraries, refer to the Working with Integrated Libraries document.
The following terms are used in this tutorial.
Component |
A component is a physical device that is placed on the board, e.g., the integrated circuit or resistor. Within these components, there may be either a single part or a set of parts that are packaged together. |
3D body |
A 3D body is a polygonal shaped object that can be added to a footprint on any enabled mechanical layer. It can be used to define the physical size and shape of a component in the horizontal and vertical planes, which enables more controlled component clearance checking and better 3D visualization. 3D body objects also act as placeholders for imported models in the component footprint or as non-PCB mounted, free-floating objects, such as housings and assemblies. |
Designators |
Designators are unique identifiers that are used to distinguish one component from another in a PCB. They can be alpha, numeric, or a combination of both. Pads also have unique designators that correspond to the component pin numbers. |
Footprint |
A footprint defines (or models) the space required by the component to mount it on the PCB. The footprint model of a component is stored in a PCB library. A footprint may contain pads for connecting to the pins of a device and a physical outline of the package created from track and/or arc segments on the silkscreen (overlay) layer. Device mounting features may also be included. Footprints in the PCB library have no designator or comment. They become components when placed on a PCB sheet where the designators and comments are allocated. |
Library |
A schematic library is a set of components and its parts are stored on individual sheets. A PCB library contains the component footprints. Each library type has its own editor. Integrated libraries combine schematic libraries with their related models and cannot be edited directly by the library editors. |
Object |
An object is any individual item that can be placed in the library editor workspace. |
Pads |
Pads are normally used in a footprint to create connection pads for component pins. |
Part |
A part is a collection of graphical objects that represent one part of a multi-device component. Parts are stored in separate sheets within components in the schematic component libraries. |
Pins |
Component pins give a component its electrical properties and define connection points on the component. |
Contact our corporate or local offices directly.