Altium NEXUS Documentation

Component Clearance

Modified by Jason Howie on Sep 26, 2019
此文档页面引用了不再受支持的产品 Altium Vault, Altium Vault 及其组件管理功能已迁移到 Altium Concord Pro
All Contents

Rule category: Placement

Rule classification: Binary

Summary

This rule specifies the minimum distance that components can be placed from each other. Component clearance includes clearance between 3D models used to define component bodies (extruded (simple) types). In the absence of 3D bodies, the primitives on the silk and copper layers (excluding Designator and Comment) are used to define the object shape and size along with the height value specified in the component properties.

Component clearance is calculated using accurate 3D meshing to define shape and contour for the component through its associated 3D body objects. These may be extruded 2D shapes. It is evident that using 3D bodies provides greatest accuracy when it comes to clearance checking, particularly in the vertical sense and in the context of complex component shapes.

The Component Clearance rule does not check for clearance violations between 3D bodies and the board surface.

All design rules are created and managed within the PCB Rules and Constraints Editor dialog. For a high-level view of working with the design rules system, see Constraining the Design - Design Rules. For detailed information regarding how to target the objects that you want a design rule to apply to, see Scoping Design Rules.

Constraints

Default constraints for the Component Clearance rule.

  • Vertical Clearance Mode - two modes for specifying vertical clearance are available:
    • Infinite - clearance checking is performed using a value representing infinity. This means that any components placed above or below will be in violation. An example of use would be a board that has an adjustment mechanism that must remain accessible. Using this rule on that component will cause a violation against any components that protrude into the area above or below the component.
    • Specified - clearance checking is performed using the exact shape defined by the component 3D bodies or component footprint properties. When using 3D bodies to make the check from, it is possible to have acceptable overhang between one component over another, provided they are not in violation. With this mode enabled, the following constraint becomes available:
      • Minimum Vertical Clearance - the value for the minimum permissible clearance, in the vertical sense, between placed components in the design.
  • Minimum Horizontal Clearance - the value for the minimum permissible clearance, in the horizontal plane, between placed components in the design.
  • Show actual violation distances - enable this option to show lines between the points of greatest violation between components. The distance of the line is displayed and can be useful in calculating the distance required to move an object to resolve the violation.
Enabling the Show actual violation distances option may reduce performance on some computer systems.

How Duplicate Rule Contentions are Resolved

All rules are resolved by the priority setting. The system goes through the rules from highest to lowest priority and picks the first one whose scope expressions match the object(s) being checked.

Rule Application

Online DRC and Batch DRC.

Tips

  1. An extruded (simple) 3D body is a polygonal shaped object that can be placed in a library component or a PCB document, on any enabled mechanical layer. In a component footprint, it can be used to specifically define the physical size and shape of a component in the X, Y and Z-axes.
  2. Multiple 3D body primitives may be used to define shapes of any complexity. This can prove especially useful in the vertical sense, as it allows you to vary the height of a component in different regions of that component.

 

Found an issue with this document? Highlight the area, then use Ctrl+Enter to report it.

联系我们

联系原厂或当地办公室

You are reporting an issue with the following selected text
and/or image within the active document:
Altium Designer 免费试用
Altium Designer Free Trial
我们开始吧!首先,您或者您的公司已经在使用Altium Designer了吗?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

既然您在使用Altium Designer,为何仍需要试用?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

好的,实际上您无需下载一个试用版本。

点击下方按钮下载最新版本的Altium Designer安装包

下载Altium Designer 安装包

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

填写下方表格,获取Altium Designer最新报价。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

如果您是Altium维保期内客户,您不需要下载试用版本。

如果您不是Altium维保客户,请填写下方表格免费试用。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

您为何想要试用Altium Designer?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

那您来对地方了!请填写下方表格申请试用吧。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

Great News!

Valid students can get their very own 6-month Altium Designer Student License for FREE! Just fill out the form below to request your Student License today.

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

好的,您可以下载免费的Altium Designer Viewer查看文档,有效期6个月。

请填写下方表格申请。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

好棒!创作是一件超酷的事情,我们可以为您提供完美的设计软件。

Upverter是一个社区导向的交流平台,专为您这样的创客量身定做。

点击这里看看吧!

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

好的,您可以下载免费的Altium Designer Viewer查看文档,有效期6个月。

请填写下方表格申请。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。