Contact Us
Contact our corporate or local offices directly.
The Fusion 360 CoDesigner button is used to open the Fusion 360 CoDesigner panel, which is used to transfer design changes back and forth between CircuitMaker and Autodesk® Fusion 360®. The button is accessed by choosing View | System | Fusion 360 CoDesigner from the PCB editor.
CoDesigner transfers the mechanical PCB assembly to ECAD through the Altium 365 platform. The changes that are transferred - the PCB assembly saved in MCAD (and updated in ECAD) is stored separately on the Altium 365 platform from the PCB assembly saved in ECAD (and updated in MCAD).
ECAD and MCAD changes are stored separately on the Altium 365 platform.
Design changes created in either environment are transferred to the target environment by performing a save in the source editor. Use the Save Project to Server command in CircuitMaker and the Save command in Fusion 360. The Update button can then be clicked in the target editor to synchronize the ECAD and MCAD designs.
Upon the save, the changes are written to the Altium 365 platform and the target editor's panel will display a message that there is a change pending the next time they open their working copy of the design file.
Save the project in CircuitMaker, then update it in Fusion 360.
Save the project in Fusion 360, then update it in CircuitMaker.
To check at any time if there are changes pending, click Update.
If you're the engineer designing both the electronics and the mechanical design, you sign in to your Altium account from both CircuitMaker and Fusion 360. The process changes slightly if different engineers are working in each of the design tools. In this situation, the CircuitMaker engineer must Share the project with the Fusion 360 engineer.
To use CoDesigner with different engineers:
► Learn more about Working with Projects in CircuitMaker.
To interface to and from Autodesk Fusion 360, you need to install the Altium CoDesigner for Autodesk Fusion 360 Add-In.
To install the Add-In:
In Autodesk Fusion 360, the Altium CoDesigner panel can be enabled by clicking the Altium CoDesigner menu entry or button, as shown above.
Autodesk Fusion 360 collaborates with CircuitMaker through the Altium 365 platform, which you must sign in to the first time you use it.
When you are not signed in, the Altium CoDesigner panel will include sign-in fields, as shown below. There is one sign-in mode, which allows you to sign into the Altium 365 platform.
Once you have signed in, you are ready to start collaborating through Altium CoDesigner. Click the Open button on the ribbon's Altium CoDesigner tab to open a PCB project saved in CircuitMaker.
Once you have signed in, CoDesigner settings can be configured in the Altium CoDesigner Settings dialog, opened via the Settings menu entry in the CoDesigner menu.
<Value><Units>
in height - the performance of Fusion 360 is affected by the number of components on the PCB. Use this option to exclude components that have a height of less than <Value><Units>
when an update is performed. Note that the height is the Height property defined in each CircuitMaker component, it is not the height of the 3D model that might be included in the PCB component. Set this option to zero to include all components.This section details the functionality and behaviors that the mechanical engineer should be aware of when using CoDesigner.
ECAD and MCAD save their changes to different storage locations on the Altium 365 platform. That means each engineer can only perform the update with changes that have been saved by the other engineer. Those changes will only include their own changes if they’ve already been accepted by the other engineer before the other engineer has saved.
For example, a board is created in ECAD, saved in the Altium 365 platform, and updated in to MCAD:
If the ECAD engineer then adds components AND the MCAD engineer adds holes, AND if each saves their board then updates the other’s board, CoDesigner will try to remove the holes in the MCAD engineer's board, and remove the components on the ECAD engineer's board:
Each engineer does have the option to reject specific proposed changes, for example, the ECAD engineer could accept the addition of the holes but reject the deletion of the removed components. However, working in this way can be hard to manage with complex boards and/or changes. Another point is that all changes to the decals are only seen by CoDesigner as a single change, so can only be accepted or rejected as a whole, not individually.
A better approach is for one engineer to make their changes and save the board, then for the other engineer to update the board before making their changes, as shown below:
CoDesigner transfers the mechanical PCB assembly to ECAD through the Altium 365 platform. The changes that are transferred are directional - the PCB assembly saved in MCAD (and updated in ECAD) is stored separately on the Altium 365 platform from the PCB assembly saved in ECAD (and updated in MCAD). That means a second mechanical engineer cannot update the board with the changes that a mechanical engineer just saved to the Altium 365 platform, instead they will be updating with the last-saved ECAD data. To allow other mechanical engineers to see your changes, put your PCB assembly in the same way as you do for any other assembly - to common storage available for both engineers. This method will preserve any MCAD constraints. Alternatively, get the ECAD designer to update the PCB in CircuitMaker and then save the updated design back to the Altium 365 platform. However, as explained below, no MCAD constraints will be included if you use this second approach.
ECAD and MCAD changes are stored separately on the Altium 365 platform.
It is important to open the PCB assembly itself in your MCAD software, not the parent device/assembly that the PCB assembly is being designed to fit in. If the PCB assembly is opened, changes made and transferred from the ECAD side will be detailed in the Altium CoDesigner panel. Changes will not be detailed in the panel if the parent device/assembly is opened.
Review the changes in the table, enable the ones you want to be applied, and click the Apply button.
If a contour of the PCB does not correspond to the shape of your enclosure:
Edit the sketch of the board’s extrusion and adjust its shape to the enclosure.
Below are some tips for ensuring the design shapes and objects used in MCAD will be supported when the board is transferred to ECAD.
Editing the board outline shape:
Edit the sketch of the board’s extrusion.
Changing the MCAD Board Origin:
If necessary, the mechanical engineer can change the MCAD origin of a bare board in the early stages of the board definition. To do that, the mechanical engineer can simply move or redraw the entire sketch of the board outline, within the board part. Note that the board part is constrained as “fixed” within the board assembly, with its origin coincident with that of the assembly (therefore “MCAD origin” relates to both the board part origin and the board assembly origin). It’s strongly recommended that this constraint is NOT modified or broken, because it may cause unpredictable changes.
Creating/editing Mounting Holes:
Create/edit a Hole feature on the top or the bottom surface of the board part.
Creating/editing Cutouts:
Create/edit an Extruded Cut feature based on the top or the bottom surface of the board part.
Editing the placement of components:
Move/rotate/flip, or mate/constrain a component.
If a component is fixed or constrained in MCAD, it becomes locked in ECAD (regardless of if that constraint allows any movements within the PCB assembly or not). If a component is locked in ECAD, it becomes fixed in MCAD unless it is already constrained there. Changes in the locked/fixed state are synchronized between MCAD and ECAD.
ECAD PCB component parameters are transferred to the corresponding models created in MCAD. Note that this does not include components that were originally placed in MCAD.
Constraints applied to the board outline:
The mechanical engineer can apply a constraint from an element of the board outline: to another board outline element; to a datum/reference feature; to a part in a higher level assembly; or to a component. CoDesigner does not modify these constraints. However, if the board outline is changed on the ECAD side, the sketch of the board part will be redrawn in MCAD and all of the edge IDs will be changed. Note that any change to any part of the board outline in ECAD will result in the entire board being redrawn in MCAD, and all board edge IDs changing. If there was a constraint applied to those edges or to the derived surfaces, those constraints will be broken. The board will stay in place in MCAD, and if necessary, the constraints can be manually restored. But considering that this will take some time, it is better to make changes to the board outline on the MCAD side only.
Constraints applied to the components:
The mechanical engineer can apply a constraint from a component: to the board; to an enclosure; or to another component. These constraints will stay healthy if the model of that component can be found locally (if the PCB assembly is not built from scratch in a different folder, or if a common folder is set up for storing models). However, if a component is moved on the ECAD side, the placement change on the MCAD side may not correspond to that movement and should be checked manually (CoDesigner will notify you in this situation). For components with an ECAD footprint, the component standoff (location relative to the board surface in the Z direction) will always be defined by the position of the STEP model in the footprint. CoDesigner will always attempt to override any conflicting MCAD constraints on an update in MCAD.
To simplify the process of working with copper and silkscreen layers in Fusion 360, you can control the visibility of these layers using the Advanced Geometry () button in the Altium CoDesigner ribbon. Clicking the button will display the four, top copper, top silkscreen, bottom copper, and bottom silkscreen sketch layers. Click a second time to hide those layers. These layers can also be selectively hidden/displayed in Fusion 360's object Browser.
Use the Advanced Geometry button on the Altium CoDesigner ribbon to quickly show or hide the top/bottom copper/silkscreen layers.
Bare Board thickness - defined by the Layer Stack in ECAD.
Contact our corporate or local offices directly.