Altium NEXUS Documentation

Working with a Board Shape Object on a PCB in Altium NEXUS

Created: September 30, 2019 | Updated: December 10, 2020

Parent page: PCB Objects

The Board Shape defines the shape of the finished board.


The board shape, also referred to as the board outline, is a closed polygon that defines the boundary, or extents, of the board. As well as providing a visual guideline of the extents of the space available for the placement and routing of the design, the board shape is also used by the internal power planes as the reference for the power plane edge pullback and the edge for splitting power planes.

The board shape is not used for output generation; it is only the placed objects that are used.


The board shape is available only in the PCB editor. When a new PCB file is created, it opens with a default board shape.

For a blank PCB project or additional PCB documents added to an existing project, the default board shape is a rectangular shape (6 inch x 4 inch, or 6000mil x 4000mil, or 152.4mm x 101.6mm). For specific project templates that can be used when creating a new PCB project, the associated PCB document in each case has a specific board shape according to the form factor of the board.

There are a number of ways this shape can be altered. The commands available depend on the current View mode:

  • Board Planning Mode - when viewing the board in planning mode, the following commands are available from the main Design menu:
    • Redefine Board Shape - use this command to interactively draw a new shape.
    • Edit Board Shape - use this command to interactively modify the shape of the board by moving vertices or sliding the edges of the shape.
    • Modify Board Shape - use this command to interactively modify by the board by adding new vertices.
    • Move Board Shape - use this command to move the location of the board shape within the workspace.
    • Move Board - use this command to move the board and all objects placed on it within the workspace.
  • 2D Layout Mode - when viewing the board in 2D, the following commands are available from the Design » Board Shape sub-menu:
    • Define from selected objects - select a set of line and/or arc primitives that define a closed shape then use this command to redefine the board shape to match this shape.
    • Create Primitives From Board Shape - use this command when the board shape exists but there are currently no objects along the boundary.
    • Define Board Cutout - use this command to define a region that will result in a hole being cut through the board when the board is fabricated.
  • 3D Layout Mode - when viewing the board in 3D, the following command is available from the Design » Board Shape sub-menu:
    • Define from 3D body - use this command to define the board shape by selecting the desired surface of a 3D model.
The current viewing mode for the PCB document can be changed using the corresponding commands from the main View menu. Alternatively, change views quickly using the 1 (Board Planning Mode), 2 (2D) and 3 (3D) keyboard shortcuts.

Interactively Redefining the Board Shape

Main article: Defining the Board Shape

After launching the Redefine Board Shape command (in Board Planning Mode), the cursor will change to a crosshair and you will enter the standard polygonal object placement mode. Board shape definition is made by performing the following sequence of actions:

  1. Position the cursor and click to anchor the starting vertex for the board shape.
  2. Move the cursor ready to place the second vertex. The default behavior is to place 2 edges with each click, with a user-defined corner shape between them. Refer to the Placement Modes section below for more details on changing corner modes.
  3. Continue to move the mouse and click to place further vertices.
  4. After placing the final vertex, right-click or press Esc to close and complete the definition of the board shape. There is no need to manually close the board shape as the software will automatically complete the shape by connecting the start point to the final point placed.

Placement Modes

When redefining the board shape there are five available corner modes, four of which also have corner direction sub-modes. During redefinition:

  • Press Shift+Spacebar to cycle through the five available corner modes: 45 degree, 45 degree with arc, 90 degree, 90 degree with arc, and Any Angle.
  • Press Spacebar to toggle between the two corner direction sub-modes.
  • When in either of the arc corner modes, hold the  key to shrink or the key to grow the arc. Hold the Shift key as you press to accelerate arc resizing.
  • Press the 1 shortcut key to toggle between placing two edges per click, or one edge per click. In the second mode, the dashed edge is referred to as the look-ahead segment (as shown in the last image in the set below).
  • Press the Backspace key to remove the last vertex.

Press Shift+Spacebar to cycle through the five available corner modes, press the 1 shortcut to toggle placement between two edges or one edge.

Graphically Editing the Board Shape

Edit Board Shape

After launching the Edit Board Shape command (in Board Planning Mode), the existing board shape will turn green. The outer shape is defined by a series of edges: where each edge is represented by an end vertex, shown as a solid white square; and a center vertex, shown as a hollow white square. Each end vertex represents the location where two edges meet.

Note that in the object Selection Filter, the Board Shape is classified as Other. The Other option must be enabled to be able to edit the board shape.

Editing handles for an example board shape after entering edit mode.

  • Click and drag A to move the applicable end vertex.
  • Click and drag B to move the applicable center vertex, effectively creating a new end vertex and splitting the original edge into two.
  • Click anywhere along an edge away from editing handles then drag to slide that edge.
  • Ctrl+click anywhere along an edge away from editing handles to insert a new end vertex.
  • Click and hold on an end vertex then press Delete to remove that vertex.
  • Exit editing mode by clicking anywhere in the workspace (on or away from the board shape).

While moving an end or center vertex, press Shift+Spacebar to cycle through the three vertex editing modes - Miter, Incurvate (arc) and Move.

Refer to the Editing Polygonal Shaped Objects page to learn more about vertex editing modes and modifying the polygon border.

Modify Board Shape

The Modify Board Shape command allows you to easily change the shape of the board. The command is accessed in Board Planning Mode and is run by selecting Design » Modify Board Shape. Once the command is launched, the cursor becomes a crosshair. Each time you click, a new vertex is added. The Shift+Spacebar keys can be used to change corner shapes.

Modifying the board shape.

Graphically Moving the Board Shape

After launching the Move Board Shape command (in Board Planning Mode), the existing board shape will turn green and an outline copy of the shape will be attached to the cursor. Move the shape to the desired new location within the workspace and click or press Enter to effect placement.

To cancel without moving, right-click or press Esc.

An outline copy of the board shape attaches to the cursor, while the original shape can be used as a reference.

Defining the Shape from Selected Objects

The board shape can also be defined from selected objects (in 2D Layout Mode). Typically this will be a set of lines and/or arcs placed on the Keepout layer or a mechanical layer. Use the following sequence of steps:

  1. All the objects on a layer can be selected using the Edit » Select » All on Layer command from the main menus.
  2. Once all the objects are selected, run the Design » Board Shape » Define from selected objects command. The board shape will update to follow the path defined by the selected lines. A warning dialog will appear if the software is unable to follow the centerline of the selected objects.

This Board Shape has been defined from a set of selected lines and arcs placed on the Keepout layer.

The software will attempt to find the shape based on the centerline of the selected objects. If the coordinates for the end of one track/arc segment do not exactly match the coordinates of the next track/arc segment, the boundary identification algorithm will fail and a message will be displayed showing the failure location. It will offer to use a tracing algorithm instead. Note that the tracing algorithm follows the outer edge of the track/arc objects, so the board shape will be slightly different than the one created from the centerlines. Only choose this option if your design can accept the impact of this difference.

Defining the Shape from a 3D Body

This feature is accessed by using the Design » Board Shape » Define from 3D body command from the main menus (when in 3D Layout Mode). Prior to launching this command, you must have already placed a 3D body in the workspace. To define a board shape from the 3D body:

  1. After launching the command, click the 3D body to select it, the cursor will change to a crosshair, ready to select the desired surface.
  2. Move the cursor around the model, when a surface is found, it is highlighted by the rest of the model being made somewhat transparent.
  3. Click on a flat surface of the model - this surface will become the new board shape.
Only surfaces aligned with the X-Y plane can be used to create the board shape from. If you select a model surface that requires alignment in the X-Y plane, you will be asked, via a Confirmation dialog, to align the surface before you can continue. This dialog also allows you to vertically position the model, using the selected face, in relation to either the top or bottom surface of the board. This means that the vertical position of the model can also be set at the same time. After alignment you will need to run the Define from 3D body command again.

An example of redefining the board shape based on the selected surface of a 3D body.

Creating Primitives from the Board Shape

As well as defining the board shape from selected primitives, it also is possible to create primitives from the board shape. Use this command when the board shape exists but there are currently no objects along the boundary. Situations where this command can be useful include:

  • When you want to modify the board shape (or board cutouts) by modifying track and arc primitives first.
  • When you need a keepout boundary for the board or keepout boundaries for board cutouts. This is discussed in more detail below in the Important Design Considerations When Using Board Cutouts section.

Cutting a Hole in the Board Shape

A board cutout can be placed anywhere in the board shape. To place a cutout, switch to view the board in 2D Layout Mode then use the Design » Board Shape » Define Board Cutout command from the main menus. Note that the cutout is actually a Solid Region object configured to be a negative object. To learn more about placing this type of object, refer to the Region object.

A Board Cutout has been placed on the Board Shape.

If the board cutout is an unusual shape, such as a circle, it can be easier to create an outline of the cutout shape using tracks and arcs (for example, Place » Arc » Full Circle), select the shape, and then convert it to a Board Cutout (Tools » Convert » Create Board Cutout from Selected Primitives).

Important Design Considerations When Using Board Cutouts

Keep the following points in mind when creating a board cutout.

Keeping the Polygon Back from the Edge of a Board Cutout

Polygons that overlay a solid region board cutout will pour as close to the edge of the cutout as allowed by the applicable Clearance design rule. A specific Clearance design rule can be created if required, which could, for example, be scoped to apply between IsBoardCutoutRegion and InPolygon.

Defining a Route Tool Path Around the Edge of the Board and Cutouts

A common approach used to cut the finished board from the fabrication panel is to mill or route the board out of the panel. Board cutouts can also be routed out. A Route Tool path is defined by placing Line and/or Arc objects on a mechanical layer. This can be done manually or automatically by the software.

To define a Route Tool path for the board and any board cutouts:

  1. With the board in 2D Layout Mode, run the Design » Board Shape » Create Primitives From Board Shape command. The Line/Arc Primitives From Board Shape dialog will open.
  2. Define a suitable Width for the objects that will define the Rout Tool path. Consult with your fabricator if you are unsure of this.
  3. Select an available mechanical layer. This layer should be reserved for just the Rout Tool path definition.
  4. Enable the Include Cutouts option if the board has cutouts in it.
  5. Enable the Route Tool Outline option. When this option is enabled the line/arc objects are placed so their edge touches the edge of the board shape and the edge of the cutout.
  6. Click OK to create the Route Tool objects on the chosen mechanical layer. 
  7. The mechanical layer used must be set as the Route Tool layer. To do this, access the Layers & Colors tab of the View Configuration panel. Right-click within a layers grid and choose the Add Mechanical Layer command. In the Edit Layer dialog that appears, set the Layer Type to Route Tool Path.  This layer type is used to indicate the layer that contains the mechanical routing information. Note that a user-defined name is not permitted when the Layer Type is set to Route Tool Path. The reason for this is that older versions of the software use the name of the Route Tool Path layer to identify the layer that contains the route information (also referred to as rout information). Fixing the naming of this layer insures that the design will continue to function correctly in an older version.

The images below show the Route Tool path defined on a mechanical layer.

A Board Cutout shown on the left, with a Route Tool path defined in the image on the right.


As well as the board shape, you also should define a placement and routing boundary around the edge of the board. This can be created automatically from the board shape itself using the Design » Board Shape » Create Primitives From Board Shape command (in 2D Layout Mode). Alternatively, this can be done manually by placing objects on the keepout layer. Objects placed on this layer define a no-crossing-allowed boundary for components and routing. Typically you want objects such as components and routing to be a certain distance from the edge of the board; this distance can be controlled by setting the applicable routing and component placement design rules. You also can define other routing and component keepouts areas for mechanical objects such as screw heads or other mounting requirements.

A keepout boundary defined by placing standard line objects on the keepout layer.

Keepout boundaries can be defined by placing any standard design objects, such as lines, arcs, fills and regions on the Keepout layer. Objects placed on the Keepout layer create a keepout on all signal layers.

You also can define layer-specific keepouts on any copper layer. To do this:

  1. Click on the layer tab of the required layer.
  2. Define the boundary or area of the keepout area by placing layer-specific keepout objects (Place » Keepout submenu). Layer specific keepouts are standard objects with the Keepout attribute enabled. They are displayed in the same color as the layer with a keepout colored edge. Note that layer-specific keepout objects are not included in Gerber or ODB++ output files.
Found an issue with this document? Highlight the area, then use Ctrl+Enter to report it.



We're sorry to hear the article wasn't helpful to you.
Could you take a moment to tell us why?
200 characters remaining
You are reporting an issue with the following selected text
and/or image within the active document:
Altium Designer 無償評価版
Altium Designer 無償評価版
Altium Designerを使用していますか?

弊社の営業担当より詳細情報をご案内しますので、アルティウムジャパン までお問い合わせください。.
Copyright © 2019 Altium Limited


弊社の営業担当より詳細情報をご案内しますので、アルティウムジャパン までお問い合わせください。.
Copyright © 2019 Altium Limited


ボタンをクリックして、最新のAltium Designerインストーラをダウンロードしてください。

Altium Designerインストーラをダウンロードする

弊社の営業担当より詳細情報をご案内しますので、アルティウムジャパン までお問い合わせください。.
Copyright © 2019 Altium Limited

Altium Designerの新規ライセンスのお見積もりをご希望の場合、下記のフォームに入力してください。


Altium Designerサブスクリプションをご利用中の場合、評価版ライセンスは不要です。

お客様がAltium Designerサブスクリプションの有効なメンバーではない場合、下記のフォームに入力して無償評価版をダウンロードしてください。


Altium Designerを評価する理由を下記から選択してください。

弊社の営業担当より詳細情報をご案内しますので、アルティウムジャパン までお問い合わせください。.
Copyright © 2019 Altium Limited



Great News!

Valid students can get their very own 6-month Altium Designer Student License for FREE! Just fill out the form below to request your Student License today.


その場合、Altium Designerビューワーの無償ライセンス(有効期間6か月)をダウンロードできます。





試してみる場合、こちらをクリック してください。

弊社の営業担当より詳細情報をご案内しますので、アルティウムジャパン までお問い合わせください。.
Copyright © 2019 Altium Limited

その場合、Altium Designerビューワーの無償ライセンス(有効期間6か月)をダウンロードできます。