Altium Designer Documentation

QTouch Component

Modified by Phil Loughhead on Jun 19, 2017
此文档页面引用了不再受支持的产品 Altium Vault, Altium Vault 及其组件管理功能已迁移到 Altium Concord Pro


The QTouch Component dialog.

Summary

This dialog allows you to configure a touch sensor component on a schematic sheet, when creating planar capacitive sensor patterns on your PCB, for use with the range of Atmel® QTouch® and QMatrix® sensor controllers.

For a detailed overview of Atmel QTouch Touch Sensor support in Altium Designer, see Atmel Touch Controls.

Access

The QTouch Component dialog can be accessed by:

  • Right-clicking over the placed sensor component and choosing the Configure command from the context menu.
  • Double-clicking on the placed component to access the Properties for Schematic Component dialog, then clicking the Configure button at the bottom-right of that dialog.

Options/Controls

  • Sensor Component Type - this drop-down field essentially allows you to switch between the different supported sensor components. The following sections detail the various components available.
Note that while you can use the dialog to quickly switch to a different sensor component type, and the graphical symbol will update accordingly, the component's Comment and Description, as well as the Design Item ID (for the linked library component) will remain reflective of, and referencing, the original placed sensor type.

Rectangular QTouch button


CapSense Component dialog - Rectangular QTouch button sensor type.

Use the QTouchButton component to implement a button (key) sensor. This is a self-capacitance, zero-dimensional sensor, with a single channel for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is a simple rectangular-shaped electrode.

Options/Controls

  • height - the height of the sensor pattern (up to 1000mm).
  • width - the width of the sensor pattern (up to 1000mm).

Rectangular QMatrix button


CapSense Component dialog - Rectangular QMatrix button sensor type.

Use the QMatrixButton component to implement a button (key) sensor. This is a mutual-capacitance, zero-dimensional sensor, with a single channel (one X and one Y electrode) for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB consists of interlocking fingers of the X and Y electrodes, in an overall rectangular shape. The Pattern for the X electrode completely surrounds that for the Y electrode.

Options/Controls

  • height - the height of the sensor pattern (up to 1000mm).
  • width - the width of the sensor pattern (up to 1000mm).
  • front panel thickness - the thickness of the front panel. This value is used to calculate the thickness of the main 'border' of the enveloping X electrode (typically equal to the panel thickness), as well as the 'fingers' of the X electrode and the spacing between X and Y electrodes (typically half of the panel thickness). The front panel thickness can be between 0.1mm and 10mm.
  • width of y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

Small QTouch slider


CapSense Component dialog - Small QTouch slider sensor type.

Use the SmallQTouchSlider component to implement a small-size slider sensor. This is a self-capacitance, 1-dimensional, spatially-interpolated sensor, with three channels for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is comprised of simple rectangular-shaped electrodes. The pattern consists of two full sized electrodes for channels 0 and 1, with channel 2 divided into two half-sized electrodes at either end.

Options/Controls

  • height - the height of the sensor pattern (between 5mm and 15mm).
  • width - the width of the sensor pattern (between 21mm and 26mm).
  • gap thickness - the clearance, or gap, between neighboring sensor channels (between 0.1mm and 0.5mm).

Medium QTouch slider


CapSense Component dialog - Medium QTouch slider sensor type.

Use the MediumQTouchSlider component to implement a medium-size slider sensor. This is a self-capacitance, 1-dimensional, spatially-interpolated sensor, with three channels for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is comprised of toothed electrodes. The pattern consists of two full sized electrodes for channels 0 and 1, with channel 2 divided into two half-sized electrodes at either end.

Options/Controls

  • height - the height of the sensor pattern (between 4mm and 30mm).
  • width - the width of the sensor pattern (between 26mm and 60mm).
  • gap thickness - the clearance, or gap, between neighboring sensor channels (between 0.1mm and 0.5mm).

Small QMatrix slider


CapSense Component dialog - Small QMatrix slider sensor type.

Use the SmallQMatrixSlider component to implement a small-size slider sensor. This is a mutual-capacitance, 1-dimensional, spatially-interpolated sensor, with multiple channels for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB resembles a 1xn array of buttons, where n is the number of channels defined. X and Y electrodes again are implemented as interlocking fingers. There is a gap between each successive X electrode. The Y electrode is continuous (it is common to all channels), with an additional finger in this gap. Isolated regions of the same X electrode are connected using vias and a track placed on the opposite layer of the board.

Options/Controls

  • number of channels - the number of channels comprising the sensor pattern (between 3 and 8).
  • number of segments between channels - the number of additional segments added between the specifed channels, allowing for a longer slider to be produced (between 0 and 10).
  • front panel thickness - the thickness of the front panel. This value is used to calculate the thickness of the main 'border' of the X electrode (typically equal to the panel thickness), as well as the 'fingers' of the X electrode and the spacing between X and Y electrodes (typically half of the panel thickness). The front panel thickness can be between 0.1mm and 10mm.
  • height - the height of the sensor pattern (between 5mm and 50mm).
  • width - the width of the sensor pattern (between 24mm and 200mm).
  • width of y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

Medium QMatrix slider


CapSense Component dialog - Medium QMatrix slider sensor type.

Use the MediumQMatrixSlider component to implement a 2-layer medium-size slider sensor. This is a mutual-capacitance, 1-dimensional, spatially-interpolated sensor, with multiple channels for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB is composed of n slanting X electrodes, where n is the number of channels defined. There is a gap between each successive X electrode. The Y electrode is continuous (it is common to all channels) and consists of a number of horizontal 'fingers'. The Y electrode is located on the Top Layer, with the X electrodes located behind, on the Bottom Layer.

Each X electrode segment is 4mm in height. For a slider that is greater in height, additional segments are essentially stacked, in an alternating zig-zag fashion. An additional Y electrode finger is added for each level of segments in this stack. For the default configuration, where the height of the slider is 12mm, the stack incorporates three segments for each X electrode. The common Y electrode has three fingers.

Options/Controls

  • number of X channels - the number of segments comprising the sensor pattern.
  • number of segments between channels - the number of additional segments added between the specifed channels, allowing for a longer slider to be produced.
  • height - the height of the sensor pattern (between 4mm and 48mm).
  • width - the width of the sensor pattern (between 20mm and 150mm).
  • gap thickness - the clearance, or gap, between neighboring sensor channels/segments (between 0.1mm and 0.5mm).
  • width of y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

Small QTouch wheel


CapSense Component dialog - Small QTouch wheel sensor type.

Use the SmallQTouchWheel component to implement a small-size wheel sensor. This is a self-capacitance, 1-dimensional, spatially-interpolated sensor, with three channels for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is comprised of simple wedge-shaped electrodes.

Options/Controls

  • diameter - the diameter of the sensor pattern (between 12mm and 20mm).

Medium QTouch wheel


CapSense Component dialog - Medium QTouch wheel sensor type.

Use the MediumQTouchWheel component to implement a medium-size wheel sensor. This is a self-capacitance, 1-dimensional, spatially-interpolated sensor, with three channels for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is comprised of toothed electrodes.

Options/Controls

  • outer diameter - the outer diameter for the sensor pattern (between 20mm and 60mm).
  • inner diameter - the inner diameter for the sensor pattern (6mm or more).
  • gap thickness - the clearance, or gap, between neighboring sensor 'teeth' (between 0.1mm and 0.5mm).

Medium resistively interpolated QTouch wheel


CapSense Component dialog - Medium resistively interpolated QTouch wheel sensor type.

Use the MediumResQTouchWheel component to implement a medium-size wheel sensor. This is a self-capacitance, 1-dimensional, resistively-interpolated sensor, with three channels for connection directly to an Atmel QTouch sensor controller. The resulting sensor pattern on the PCB is comprised of wedge-shaped electrodes.

When configuring the sensor, you can choose how many electrode 'spacer segments' are used, equally, between channels. The default configuration uses 3 segments, resulting in 12 wedge-shaped X electrodes in the pattern. Remember that only 3 of these electrodes are connected back to the sensor controller. For this default configuration, the 3 channels connected to the sensor controller are associated with pins 1, 5 and 9 of the component.

To provide the electrically-driven interpolation of the sensors' electric fields, additional resistors must be used in the design, typically connecting a total of 100kOhms between successive channels that are connected to the controller (or 25kOhms between electrode segments).

Options/Controls

  • number of segments between the channels - the number of electrode 'spacer' segments added between the sensor's three channels.
  • outer diameter - the outer diameter for the sensor pattern (between 20mm and 60mm).
  • inner diameter - the inner diameter for the sensor pattern (between 5mm and 9mm).
  • gap thickness - the clearance, or gap, between neighboring electrode segments (between 0.1mm and 0.5mm).
The outer arch of each segment must be between 6mm and 8mm. You will need to modify the outer diameter, inner diameter, or number of segments between channels, to achieve this.

Small QMatrix wheel


CapSense Component dialog - Small QMatrix wheel sensor type.

Use the SmallQMatrixWheel component to implement a small-size wheel sensor. This is a mutual-capacitance, 1-dimensional, spatially-interpolated sensor, with multiple channels for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB resembles a 1xn circular array of buttons, where n is the number of channels defined. X and Y electrodes again are implemented as interlocking fingers, with tapering of the X-electrode fingers. There is a gap between each successive X electrode. The Y electrode is continuous (it is common to all channels), with an additional finger in this gap. Isolated regions of the same X electrode are connected using vias and a track placed on the opposite layer of the board.

Options/Controls

  • number of channels connected to the MCU - the number of channels comprising the sensor pattern, which are connected back to the sensor controller (between 4 and 8).
  • number of segments between the channels - the number of electrode 'spacer' segments added between the sensor's specified channels (between 0 and 10).
  • panel thickness - the thickness of the front panel. This value is used to calculate the thickness of the main 'border' of the X electrode (typically equal to the panel thickness), as well as the spacing between X and Y electrodes (typically half of the panel thickness). The front panel thickness can be between 0.1mm and 10mm.
  • outer diameter - the diameter for the sensor pattern (between 15mm and 21mm).
  • width of the y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

A medium-sized, resistively interpolated QMatrix wheel


CapSense Component dialog - A medium-sized, resistively interpolated QMatrix wheel sensor type.

Use the MediumResQMatrixWheel component to implement a 2-layer medium-size wheel sensor. This is a mutual-capacitance, 1-dimensional, resistively-interpolated sensor, with multiple channels for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB is composed of n curved-tooth X electrodes, where n is the number of channels defined. There is a gap between each successive X electrode. The Y electrode is continuous (it is common to all channels) and consists of a number of 'rings'. The Y electrode is located on the Top Layer, with the X electrodes located behind, on the Bottom Layer.

Each X electrode segment is radially 4mm in height. For a wheel that is greater in diameter, additional segments are essentially stacked, radially outward, in an alternating curved-tooth fashion. An additional Y electrode 'ring' is added for each level of segments in this stack. For the default configuration, where the inner diameter is 7.5mm and outer diameter is 30mm, the stack incorporates three segments for each X electrode. The common Y electrode has three rings accordingly.

When configuring the sensor, you can choose how many electrode 'spacer segments' are used, equally, between channels. The default configuration 4 channels and uses 3 spacer segments, resulting in 16 curved-tooth X electrodes in the pattern. For this default configuration, the 4 channels connected to the sensor controller are associated with pins 1, 5, 9 and 13 of the component.

To provide the electrically-driven interpolation of the sensors' electric fields, additional resistors must be used in the design, typically connecting a total of between 2kOhms and 100kOhms between the n channels that are connected to the controller.

Options/Controls

  • number of channels connected to the MCU - the number of channels comprising the sensor pattern, which are connected back to the sensor controller (between 4 and 8).
  • number of segments between the channels - the number of electrode 'spacer' segments added between the sensor's specified channels (between 0 and 10).
  • outer diameter - the outer diameter for the sensor pattern (between 10mm and 100mm).
  • inner diameter - the inner diameter for the sensor pattern.
  • gap thickness - the clearance, or gap, between neighboring electrode segments.
  • width of the y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

A medium/large QMatrix wheel


CapSense Component dialog - A medium/large QMatrix wheel sensor type.

Use the MediumLargeQMatrixWheel component to implement a 2-layer medium-size wheel sensor. This is a mutual-capacitance, 1-dimensional, spatially-interpolated sensor, with multiple channels for connection directly to an Atmel QMatrix sensor controller. The resulting sensor pattern on the PCB is composed of n curved-tooth X electrodes, where n is the number of channels defined. There is a gap between each successive X electrode. The Y electrode is continuous (it is common to all channels) and consists of a number of 'rings'. The Y electrode is located on the Top Layer, with the X electrodes located behind, on the Bottom Layer.

Each X electrode segment is radially 4mm in height. For a wheel that is greater in diameter, additional segments are essentially stacked, radially outward, in an alternating curved-tooth fashion. An additional Y electrode 'ring' is added for each level of segments in this stack. For the default configuration, where the inner diameter is 16mm and outer diameter is 40mm, the stack incorporates three segments for each X electrode. The common Y electrode has three rings accordingly.

Options/Controls

  • number of channels connected to the MCU - the number of channels comprising the sensor pattern, which are connected back to the sensor controller (between 4 and 8).
  • number of segments between the channels - the number of electrode 'spacer' segments added between the sensor's specified channels (between 0 and 10).
  • outer diameter - the outer diameter for the sensor pattern (between 20mm and 500mm).
  • inner diameter - the inner diameter for the sensor pattern (5mm or more, and less than 8mm smaller than the outer diameter).
  • gap thickness - the clearance, or gap, between neighboring electrode 'teeth' (between 0.1mm and 0.5mm).
  • width of the y side of the sensor - the width of the Y electrode. This should be kept as thin as possible, between 0.1mm and 0.5mm.

 

Found an issue with this document? Highlight the area, then use Ctrl+Enter to report it.

联系我们

联系原厂或当地办公室

You are reporting an issue with the following selected text
and/or image within the active document:
Altium Designer 免费试用
Altium Designer Free Trial
我们开始吧!首先,您或者您的公司已经在使用Altium Designer了吗?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

既然您在使用Altium Designer,为何仍需要试用?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

好的,实际上您无需下载一个试用版本。

点击下方按钮下载最新版本的Altium Designer安装包

下载Altium Designer 安装包

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

填写下方表格,获取Altium Designer最新报价。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

如果您是Altium维保期内客户,您不需要下载试用版本。

如果您不是Altium维保客户,请填写下方表格免费试用。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

您为何想要试用Altium Designer?

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

那您来对地方了!请填写下方表格申请试用吧。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

Great News!

Valid students can get their very own 6-month Altium Designer Student License for FREE! Just fill out the form below to request your Student License today.

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

好的,您可以下载免费的Altium Designer Viewer查看文档,有效期6个月。

请填写下方表格申请。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。

好棒!创作是一件超酷的事情,我们可以为您提供完美的设计软件。

Upverter是一个社区导向的交流平台,专为您这样的创客量身定做。

点击这里看看吧!

如果您有任何需求,请点击这里联系获取当地办公室销售代表联系方式。.
Copyright © 2019 Altium Limited

好的,您可以下载免费的Altium Designer Viewer查看文档,有效期6个月。

请填写下方表格申请。

点击[获取免费试用],并同意我们的隐私政策。您会接收到来自Altium的资讯,并允许其改变您的通知首选项。